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Abstract This review summarizes results for Rayleigh-Bénard convection that
have been obtained over the past decade or so. It concentrates on convection in com-
pressed gases and gas mixtures with Prandtl numbers near one and smaller. In addition
to the classical problem of a horizontal stationary fluid layer heated from below, it
also briefly covers convection in such a layer with rotation about a vertical axis, with
inclination, and with modulation of the vertical acceleration.

1. INTRODUCTION

Fluid motion driven by thermal gradients (thermal convection) is a common and
important phenomenon in nature. Convection is a major feature of the dynamics
of the oceans, the atmosphere, and the interior of stars and planets (Busse 1978,
1989; Getling 1998). It is also important in numerous industrial processes. For
many years the quest for the understanding of convective flows has motivated
numerous experimental and theoretical studies.

In spatially extended systems, convection usually occurs when a sufficiently
steep temperature gradient is applied across a fluid layer. The spatial variation of
a convection structure often is referred to as pattern. The nature of such convection
patterns is at the center of this review. Pattern formation is determined by non-
linear aspects of the system under study. For this reason the elucidation of pattern
formation is a challenging problem in condensed-matter physics as well as in
fluid mechanics. Pattern formation is also common in many other spatially
extended nonlinear nonequilibrium systems in physics, chemistry, and biology
(Manneville 1990, Cross & Hohenberg 1993). Patterns observed in diverse sys-
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710 BODENSCHATZ n PESCH n AHLERS

tems are often strikingly similar, and their understanding in terms of general,
unifying concepts has long been a main direction of research (Cross & Hohenberg
1993, Newell et al 1993).

Many fundamental aspects of patterns and their instabilities have been studied
intensively over the past three decades in the context of Rayleigh-Bénard con-
vection (RBC). In a traditional RBC experiment, a horizontal fluid layer of height
d is confined between two thermally well conducting, parallel plates. When the
difference DT 4 Tb 1 Tt between the bottom-plate temperature Tb and the top-
plate temperature Tt exceeds a critical value DTc, the conductive motionless state
is unstable and convection sets in. The simplest pattern which can occur is that
of straight, parallel convection rolls with a horizontal wavelength k ' 2d (wave
number q ' p/d). Such rolls can be found near onset; however, as the dimen-
sionless distance e [ DT/DTc 1 1 increases, the patterns often become progres-
sively more complicated, and thus also more interesting.

Rayleigh-Bénard convection is perhaps the most thoroughly investigated and
understood pattern-forming system. The experimental setup is simple in principle
and the basic physical mechanism (buoyancy vs dissipation) well understood. For
the standard description in terms of the Oberbeck-Boussinesq equations, Equa-
tions 1 and 2 below, only two nondimensionalized control parameters are suffi-
cient (Busse 1978, 1989). The first is the Rayleigh number R [ agDTd 3/(mj)
with a the thermal expansion coefficient, j the thermal diffusivity, m the kinematic
viscosity, and g the acceleration of gravity. Convection starts (under ideal con-
ditions) at the critical value Rc 4 1708. The second parameter is the Prandtl
number r [ m/j, which can be viewed as the ratio of the vertical thermal diffusion
time tm 4 d 2/j to the vertical viscous relaxation time tg 4 d 2/m. This parameter
measures the relative importance of the nonlinear terms in the Boussinesq equa-
tions, namely those terms describing temperature and momentum advection.

There are several recent reviews of Rayleigh-Bénard convection.1 In the pres-
ent one we focus on new developments during the last decade or so. Let us,
however, briefly outline some of the seminal earlier results that were of major
importance for the later work. Quite early it was established theoretically that the
stable pattern in an infinitely extended layer of a Boussinesq fluid close to onset
(see Section 3 below) consists of straight, parallel rolls of wavenumber q ' qc

(Schlüter et al 1965). Further above onset, the stability regimes of these rolls in
the R 1 q space as functions of r (the ‘‘Busse balloon’’) are well understood
owing to the impressive work by Busse and coworkers (Busse 1978, 1989). The
value of r varies widely for different experimental fluids, from 2(1012) for liquid
metals to values near one for gases and for liquid helium, to the range from 2 to
12 for water, and into the 1000s for silicone oil (see de Bruyn et al 1996 and
references therein). Although Rc, the critical wavevector qc 4 3.117, and the
patterns in the close vicinity of onset (R . Rc) are independent of r, subsequent

1Busse (1989), Croquette (1989a,b), Cross & Hohenberg (1993), de Bruyn et al (1996),
and Getling (1991, 1998).
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RAYLEIGH-BÉNARD CONVECTION 711

bifurcations that occur with increasing R are s dependent. For example, one finds
an oscillatory secondary instability at medium and small Prandtl numbers, in
contrast to a stationary bimodal (knot) bifurcation at large r (Busse 1978, 1989).
Not too far from threshold, the Busse balloon was found to agree well with the
experiments for large r (water) (Busse & Whitehead 1971) and reasonably well
for gases with r . 1 (Croquette 1989a, Plapp 1997).

Although ideal periodic patterns can be created in experiments, natural con-
vective patterns, particularly when they form in the presence of lateral walls,
typically are disordered and develop persistent spatio-temporal dynamics as e
increases. Snapshots of such patterns are characterized by local roll patches with
grain boundaries and point defects (dislocations).2 These spatio-temporal chaotic
patterns are irregular in time and in the horizontal plane, but they maintain a
relatively simple structure in the vertical direction. They should be contrasted
with fully developed turbulence (Frisch 1995), at very large R, which is disordered
in three spatial dimensions and not the topic of this review.

For the description of nonuniform patterns not too far from threshold, various
reductions of the original hydrodynamical equations have proven to be useful
(Manneville 1990, Cross & Hohenberg 1993, Newell et al 1993). One particularly
important theoretical result, which motivated much of the work during the last
decade, was that for a fluid of r . 1, roll curvature induces slowly varying long-
range pressure gradients (Siggia & Zippelius 1981) that drive a so-called mean
flow that in turn couples back to the roll curvature. In subsequent experimental
work,3 these ideas have found their convincing confirmation. Model equations
that generalize the so-called Swift-Hohenberg equations (SH-equations) (Swift &
Hohenberg 1977) were developed. They allow the isotropic description of the
pattern-formation processes in the presence of mean flow (Manneville 1983,
Greenside & Coughran 1984). Although the SH-equations can not be derived
systematically from the Boussinesq equations, they capture much of the observed
physical behavior and have now become a general tool used to investigate not
only RBC, but also other pattern-forming systems (Cross & Hohenberg 1993).

2. RECENT DEVELOPMENTS

Over the last 10 years the major experimental progress in RBC was due to the
development of experimental apparatus for the study of convection of compressed
gases in samples with large aspect ratios C 4 L/(2d). Here L is the typical lateral
size of the convecting sample. Also very important was the rapid increase in
computational power. The availability of large and fast storage media and of

2See Croquette (1989b), Manneville (1990), Newell et al (1993), Cross & Hohenberg
(1994), and Busse & Clever (1998).
3See, for instance, Croquette et al (1986b), Croquette (1989a), Daviaud & Pocheau (1989),
Hu et al (1995a), and Pocheau & Daviaud (1997).
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712 BODENSCHATZ n PESCH n AHLERS

digital imaging equipment was crucial. It is now possible to study pattern dynam-
ics by acquiring large time sequences of images. Some recent experimental proj-
ects have involved the analysis of over 105 high-resolution digital images (Hu et
al 1997).

At the end of the 1980s, a new era started with the work by Croquette and
coworkers (Croquette 1989a,b), demonstrating that the horizontal planforms of
thermal convection of compressed argon gas could be visualized by the now-
well-established shadowgraph technique (de Bruyn et al 1996). Some very impor-
tant mechanisms were identified and analyzed despite the use of rather small
aspect-ratio cells (C . 15). In the meantime, the aspect ratio of gas-convection
cells has been pushed to much larger values (C . 100) (Bodenschatz et al 1992b,
Morris et al 1993, Assenheimer & Steinberg 1993). Typical experimental cells
are constructed with a reflective bottom plate (silver, aluminum, aluminum-coated
sapphire, or silicon) and a transparent top sapphire plate. Whereas the bottom
plate is usually heated with a film heater, the top plate is cooled by a circulating
water bath (de Bruyn et al 1996). Two experimental designs have been used. In
the first, the top plate of the convection cell acts as a pressure window. This limits
the size of the diameter due to unavoidable mechanical deformations by the large
pressure differential that the plate has to sustain (Croquette 1989a, Assenheimer
& Steinberg 1993, Assenheimer 1994, Rogers et al 1998). In the second, the
cooling water is pressurized, thus reducing the pressure differential to near zero.
This allows the use of convection cells of larger diameter with little horizontal
variations of R across the cell (de Bruyn et al 1996).4

Much of the theoretical work has been done in the Boussinesq approximation,
which assumes that the fluid properties do not vary over the imposed temperature
interval, except for the density, where it provides the buoyant force. Experiments
can be conducted under conditions that correspond closely to the Boussinesq
approximation. A quasi-Boussinesq fluid is typically achieved by designing an
experiment that yields a modest critical temperature difference DTc between the
confining plates (typically not more than a few degrees C). This is achieved by
using an appropriate cell height d. For conventional fluids like water, this implies
that d must be larger than ; 3 mm. This in turn limits the maximum possible
value of C because uniform cells of excessive lateral extent are difficult to con-
struct and expensive to produce. Another factor that prohibits the use of large
lateral dimensions is the increase with aspect ratio C of the horizontal diffusion
time th 4 C2tv 4 C2d 2/j, which influences the time required for pattern relaxa-
tion. For example, for an experiment with water as a Boussinesq fluid, the typical
vertical diffusion time tv . 30s. For C . 100 this yields a horizontal diffusion
time of th . 84h. This would make experiments impractical, as some pattern-
selection phenomena require timescales of tens of th (Ahlers et al 1985a).

Compressed gases have the advantage that the material parameters are such
that a Boussinesq fluid can be achieved at rather small layer heights d. In typical

4Both DT and d need to be constant across the cell, as R } DTd 3.
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RAYLEIGH-BÉNARD CONVECTION 713

experiments the layer heights are in the range from 0.3 to 1 mm, and tv can be
one second or less. For a convection cell with C 4 100, this gives a horizontal
diffusion time of th . 3h (de Bruyn et al 1996). For pure gases away from the
critical point, the value of the Prandtl number is r ' 1. However, it is possible
to tune the Prandtl number in several ways. Assenheimer & Steinberg (1993,
1994, 1996a) conducted experiments near the critical point of SF6. They were
able to cover the Prandtl number range 2 , r , 115.5 In their experiments the
vertical thermal diffusion times ranged from tv 4 3s in a d 4 130 lm cell to
tv 4 27s in a d 4 380 lm cell (Assenheimer 1994). In another experiment, Liu
& Ahlers (1996, 1997) used gas mixtures to tune the Prandtl number from 0.17
, r , 1. For a cell of height d 4 1.46 mm, their vertical thermal diffusion times
were in the range 1.2s , tv , 6s. Thus in conclusion, compressed gases now
allow experiments with large C for 0.17 , r , 115.

The substantial progress described above has allowed a whole set of new
experiments and has led to many new discoveries. For horizontal RBC, Boden-
schatz et al (1991, 1992a) investigated the competition between hexagons and
rolls in non-Boussinesq convection (see Sect. 6.5). They also discovered giant
rotating spirals, which were later analyzed in detail by Plapp & Bodenschatz
(1996) and Plapp (1997) (see Sect. 6.3). In 1993, spiral-defect chaos (SDC) was
discovered by Morris et al (1993) in a parameter regime where, on the basis of
the theory for an infinitely extended system, parallel straight rolls (ideal straight
rolls, or ISR) are stable (see Sect. 7). A great number of investigations followed
that were concerned with the onset of SDC (see Liu & Ahlers 1996 and references
therein). Later, in experiments by Cakmur et al (1997a), it was demonstrated that
both SDC and ISR are, in fact, stable attractors in the same parameter regime.
These developments were accompanied by increased theoretical activities. SDC
was reproduced in SH-model calculations (see Cross 1996 and references therein)
and in numerical solutions of the Boussinesq equations (see Pesch 1996 and
references therein) (see Sect. 3). From these investigations it is clear that SDC is
an attractor that competes with ISR and that mean-flow effects due to roll cur-
vature are important at not too large r. In another set of experiments, Assenheimer
& Steinberg (1993) found that SDC evolved into a state of target chaos when the
Prandtl number is raised (see Sect. 7). Assenheimer & Steinberg (1996b) also
found a state of coexisting up-and-down hexagons, which was later explained
theoretically by Clever & Busse (1996). During the last five years, experiments
also studied the effect of rotation around a vertical axis (see Hu et al 1998 and
references therein), of inclination (Daniels et al 1999), and of modulation of the
vertical acceleration (Rogers et al 1998) (see Sect. 9). Another interesting topic,
not discussed in this review, is thermal convection in planetary and stellar inte-
riors, which is characterized by a finite angle between the vectors of rotation and
gravity. This situation can be modeled in laboratory experiments through the use

5Work describing the experiments at r 4 115 was presented at the workshop Character-
ization of Spiral Detect Chaos at Los Alamos Nat. Lab., January 4–5 1999.
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714 BODENSCHATZ n PESCH n AHLERS

of centrifugal buoyancy (Busse et al 1998). Time-dependent complex states have
been described and also new types of stationary patterns like the interesting hexa-
rolls (Auer et al 1995).

The following sections discuss the above-mentioned developments in detail.

3. THEORETICAL ANALYSIS

In this section we sketch the common theoretical methods for the description of
pattern-forming systems in order to emphasize the universal and common features
among patterns in different systems. We exclusively consider large-aspect-ratio
systems (C k 1), in which the horizontal dimensions of the fluid layer in the (x,
y)-plane are assumed to be considerably larger than the cell height d. In typical
experiments, shadowgraph visualization shows only the vertically averaged
index-of-refraction variations.6 This is analogous to theoretical treatments, where
the interesting aspects of the patterns are reflected in suitable ‘‘projections’’ of
the three-dimensional hydrodynamic description onto the two-dimensional hori-
zontal plane. As discussed later in this section, such a dimensional reduction is
reliable even for the complex spatial-temporal patterns presented in this review
because the vertical spatial variations remain quite smooth.

Rayleigh-Bénard convection is described by the well-known nondimension-
alized Boussinesq equations (see e.g. Busse 1978)

]u
11 2r ` u • ¹u 4 1¹p ` ¹ u ` ê H (1)z1 2]t

]H
2` u • ¹H 4 ¹ H ` Rê • u, (2)z]t

where êz is the unit vector in the z direction (opposite to the direction of gravity)
and p is the pressure. The velocity field u and the deviation U of the temperature
from the diffusive linear temperature profile vanish at the horizontal boundaries
of the cell.7 Incompressibility (¹.u 4 0) is assumed. As already discussed in
Section 1, the system is governed by two dimensionless quantities, namely the
Rayleigh number R and the Prandtl number r. Equations 1 and 2 show the sen-
sitivity to r. For r k 1, the left-hand side of Equation 1 can be neglected, thereby
eliminating one of the nonlinearities. For r ' 1, both nonlinearities in Equations
1 and 2 are important.

6To be precise, the shadowgraph signal is sensitive to the second derivative of the index
of refraction with respect to the horizontal coordinates (de Bruyn et al 1996, Berry &
Bodenschatz 1999).
7Alternatively, in the theoretical models free-slip boundaries have been used. At small r
one then finds patterns of spatio-temporal chaos immediately above onset (Busse et al
1992, Xi & Gunton 1995).
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RAYLEIGH-BÉNARD CONVECTION 715

Equations 1 and 2 must be generalized for more complicated experimental
situations, in which some of the underlying symmetries are broken. For instance,
in the case of rotation about a vertical axis the Coriolis force 2Xêz 2 u must be
included in Equation 1 (see e.g. Küppers & Lortz 1969). In principle, the cen-
trifugal force should also be included; however, in experiments the rotation rate
X is typically kept so small that the centrifugal force is insignificant (see also
Sect. 8). Convection becomes anisotropic when the layer is inclined, i.e., when
the normal to the layer has a finite angle with gravity. In this case a shear flow
already exists in the base state (see also Sect. 9.2).

In the most commonly used Boussinesq description, the material parameters
within the layer are approximated by their vertical average (except for the density,
which is responsible for the buoyancy force driving the convection). For exper-
iments with large temperature gradients, vertical variations of the material param-
eters are significant and have to be included in the theoretical description (see
e.g. Busse 1967). This leads to a transcritical bifurcation at threshold and to
hexagonal patterns instead of rolls (see also Sect. 6.5). This situation is generally
referred to as non-Boussinesq convection. In yet another variation, the influence
of temporal (see Sect. 9.3) and spatial modulations (Schmitz & Zimmermann
1996) on RBC was considered.

3.1 Ideal Straight Rolls and Their Stability

The theoretical methods for analyzing pattern-forming instabilities are quite
extensively discussed in the literature (see e.g. Cross & Hohenberg 1993, Newell
et al 1993, and Pesch & Kramer 1995). One expects, in good agreement with
certain carefully controlled experiments, that for large-aspect-ratio systems the
simplifying idealization of an infinitely extended system is justified. This naturally
leads to a convenient description of patterns in terms of Fourier modes in a two-
dimensional (2d) wavevector (q) space. For an ideal straight-roll (ISR) pattern
with wavelength, only one pair of Fourier modes is excited; ideal square patterns
require two pairs of modes, and ideal hexagons, three.8 These ideal patterns can
be approximated experimentally in necessarily finite containers only under certain
exceptional, well-controlled conditions. For certain initial conditions, or when the
influence of lateral boundaries is strong, experiments often produce disordered
patterns that require a wave packet of many modes in their theoretical description.

The first step in the theoretical analysis is the standard linear stability analysis
of the basic (primary) state. The problem diagonalizes in Fourier space with
respect to the horizontal coordinates x 4 (x, y) according to the ansatz V(x, z, t)
4 eiq•xU(q, z)ek(q)t. The symbolic vector V stands for the field variables U, u in
Equations 1 and 2. For fixed q one arrives at an eigenvalue problem with a discrete
set of eigenvalues ki(q, R) with the corresponding eigenvectors Ui(q, z), where
the ki, i41,2 . . . are ordered with respect to decreasing magnitudes of the real

8This is only true to linear order—in general higher harmonics are also excited.
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716 BODENSCHATZ n PESCH n AHLERS

part. When, for increasing R, the growth rate, i.e. 5e(k1(q, R)) crosses zero at R
4 R0(q) (neutral curve) and becomes positive, the instability occurs. Minimiza-
tion of R0(q) yields the critical wavevector qc and the threshold Rc 4 R0(qc). ISR
solutions of wavevector q exist for R . R0(q) $ Rc. The bifurcation to ISR will
be either stationary, i.e. when (m(k1(qc, Rc)) 4 0, or oscillatory (Hopf), i.e. when
(m(k1(qc, Rc)) ? 0 as for instance at low r in RBC with rotation (see Sect. 9.1).
The q-dependence of ki [and correspondingly of R0(q)] reflects the spatial sym-
metries of the system. In rotationally invariant systems like RBC, the eigenvalues
ki can depend only on |q|, whereas, for example, in axially anisotropic systems
like the inclined layer (or nematic liquid crystals), the angle fq of q with respect
to the direction of anisotropy is also important: One observes, besides normal
rolls (fq 4 0), situations with broken chiral symmetry (fq ? 0).

For our purpose, a reformulation of the nonlinear partial differential equations,
Equations 1 and 2, is very convenient (Pesch 1996). The solutions (u, U) [ V
are expanded in terms of the eigenvectors Ui(q, z) of the linear problem as

V(x, z, t) 4 A (q, t)U (q, z) exp(iqx). (3)o i i
i ,q

Projection on the Ui leads to a coupled system of ODEs for the expansion coef-
ficients Ai:

] A (q, t) 4 k (q)A (q, t) ` N (A , A ). (4)t i i i i j k

Note that the different q-vectors are coupled by the projections Ni of the quadratic
nonlinearities in Equations 1 and 2. In practice, the equations are then suitably
truncated (i # Ncut) and solved on a discrete mesh of wavevectors q. In addition,
it is convenient to capture the z-dependence of the Ui by an expansion in suitable
basis functions that fulfill the vertical boundary conditions (‘‘Galerkin method,’’
Clever & Busse 1974).

The evaluation of periodic nonlinear stationary solutions Vstat of Equation 4
amounts to the solution of a nonlinear set of algebraic equations; Vstat contains a
basic mode with wavevector q0 together with its higher harmonics. As before, the
stability of the stationary solutions is determined by an eigenvalue problem, which
arises from the linearization of Equation 4 around Vstat. In general, one has to
consider long-wavelength (modulational) and short-wavelength instabilities.
Perturbations with wavevectors q 4 nq0 ` s, where n 4 (0, 51, 52 ...),
are considered, and the stability is determined by searching the growth rates
knonlin (q, s, R) for the largest real part. The corresponding eigenvector is domi-
nated by a mode with wavevector nmaxq. In most cases there exists a region in
(R, q, k) 1 space for which the periodic solutions are stable, i.e. where
knonlin , 0.

The boundaries of the stability region (Busse balloon) are determined by vari-
ous destabilization mechanisms (Busse 1989). Of particular importance are the
destabilizing long-wavelength modulations (|s| K |q|, (m(k) 4 0) of the ISR-
pattern. One speaks of Eckhaus (ECK) (nmax 4 1 and s \ q, modulation of the
roll distance), zig-zag (ZZ) (nmax 4 1 and s ' q, undulations along the roll axis),
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RAYLEIGH-BÉNARD CONVECTION 717

or in the general case of skewed varicose (SV) instabilities (nmax 4 1). For r '
1, SV-instabilities delineate the boundary of the Busse balloon on the large-q side.
For r & 1, yet another instability, the ‘‘oscillatory instability,’’ limits the Busse
balloon from above. This instability has (m(k) ? 0, s ' q, and nmax 4 1. In
addition, short-wavelength mechanisms can come into play. In this case the pat-
tern is destabilized by disturbances with wavevectors |s| ' |q| but at a finite angle
with respect to q. For r ' 1, the cross-roll (CR) instability with s ' q (nmax 4
0, (m(k) 4 0) limits the Busse balloon at small wavenumbers. These instabilities
are discussed in more detail for r ' 1 in Section 5. Experiment shows (see Egolf
et al 1998 and references therein), that to a good approximation, the idealized
Busse balloon is also applicable locally to patches of ISR in an otherwise disor-
dered pattern.

The Küppers-Lortz instability (Küppers & Lortz 1969) occurs in RBC cells
rotated around a vertical axis. Above a certain rotation frequency Xc(r), periodic
roll patterns are unstable, even at threshold. At large r, one finds, for instance,
∠(q, s) ' 608 with |s| ' qc (nmax 4 0).

3.2 Order Parameter Equations

Slightly above threshold and when q is near qc, the amplitude A1 ([ A) can be
treated as the main dynamical variable, because only 5e(k1(q)) is positive. By a
systematic expansion up to cubic order in A, which is assumed to be small near
onset, one arrives at an order parameter equation (OPE) in Fourier space:

]
A(q, t) 4 k (q)A(q, t) ` dq a (q, q )A(q , t)A(q 1 q , t)1 1 2 1 1 1#]t

` dq dq a (q, q , q )A(q , t)A(q , t)A(q 1 q 1 q , t). (5)1 2 3 1 2 1 2 1 2#
The reduced dynamical description of patterns in terms of one amplitude A(q)
(weakly nonlinear analysis) serves as the unifying description of many different
pattern-forming phenomena. Systems differ mostly with respect to the explicit
expressions for k and the kernels a2, a3. The order-parameter formulation, Equa-
tion 5, is nowadays standard (Haken 1978, Cross & Hohenberg 1993, Newell et
al 1993). In particular, it has been shown that the OPE (5) can capture the Busse
balloon even far away from threshold. Thus the OPE is particularly useful in
describing systems for which a fully nonlinear analysis is too demanding (Pesch
& Kramer 1995).

In RBC under Boussinesq conditions, where only the temperature variations
of the density across the cell are kept, the a2 term in Equation 5 is zero. In this
case, one obtains a supercritical (forward) bifurcation; i.e. above threshold, the
amplitude A(qc) grows continuously ; (Schlüter et al 1965). Tem-(R 1 R ))/R! c c

perature variations of the material parameters, such as the viscosity or the thermal
diffusivity, are typically small and can be treated perturbatively in terms of a
small parameter 3 (Busse 1967) (see also Cross & Hohenberg 1993, Sect.
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718 BODENSCHATZ n PESCH n AHLERS

VIII.F,3). For 3 ? 0, the quadratic term (a2 } 3) in Equation 5 is nonvanishing
and the symmetry A r 1A is broken. This reflects the broken inversion symmetry
z r 1z, U r 1U, uz r 1uz due to additional terms in Equations 1 and 2. The
onset of convection becomes transcritical toward a hexagonal pattern, which can
exist even below Rc because the quadratic term is activated due to a resonant
coupling q1 ` q2 ` q3 4 0 of the corresponding wavevectors (see Sect. 6.5).

Also important is that Equation 5 can be taken as the general basis for a
‘‘derivation’’ of the reduced model equations for pattern-forming systems. Let us
briefly sketch the derivation of the Swift-Hohenberg (SH) equations for a2 4 0
(Swift & Hohenberg 1977). They can be obtained by transforming Equation 5 to
the 2d-position space for the amplitude w(x) 4 * dq exp(iqx)A(q). If the argu-
ments of the kernel a3(q, q1, q2) are suitably fixed at |qc|, the cubic nonlinearity
in Equation 5 becomes proportional to w3. Keeping additional terms from an
expansion about qc leads to further cubic terms with gradients of w. However,
the expansion of the kernel is not smooth, and certain nonanalytic contributions
(the so-called mean-flow terms) have to be treated separately in terms of a further
amplitude B (Manneville 1983, Cross & Hohenberg 1993, Decker & Pesch 1994).
One arrives at

2n 1
2 2 2] w 4 e 1 (D ` q ) 1 w w 1 U¹w,t c1 224q qc c

U 4 (] B, 1 ] B),y x

11c r2 2 2 2c 1 ¹ ¹ B 4 (¹(¹ W) 2 ¹W) • ê . (6)1 z1 22 2q qc c

In Equation 6, e 4 (R 1 Rc)/Rc serves as the convenient measure of the distance
from threshold. The coherence-length amplitude n and c1, c2 are constants. In
some cases it is useful to further reduce the SH-equations by eliminating the fast
spatial variations } . One arrives at so-called Ginzburg-Landau equations,11qc

such as the well-known Newell-Whitehead-Segel equation (Newell & Whitehead
1969, Segel 1969), which describe modulated patterns about a wavevector of a
fixed direction. In the case B 4 0 (appropriate at large Prandtl-number), the
dynamics of Equation 6 are governed by a Lyapunov functional ^ according to
]w/]t 4 1d^/dw, and the time evolution is toward a fixed point. However, for
finite B the system is not potential, thus opening the possibility for complex
spatio-temporal behavior. Consequently, a description of patterns based on Equa-
tions 6 or their slight generalizations has become popular in analytical investi-
gations as well as in many numerical studies (see Cross & Hohenberg 1993).
Based on Equations 6, researchers have successfully investigated the dynamics
of defects and grain boundaries (see Cross & Hohenberg 1993), the stability of
planforms and transitions between them [e.g. from hexagons to rolls (Xi et al
1992)], and the influence of noise (see Sect. 4). In particular, important insight
into the mechanism of spiral-defect chaos (SDC) (Xi et al 1993, Bestehorn et al

A
nn

u.
 R

ev
. F

lu
id

 M
ec

h.
 2

00
0.

32
:7

09
-7

78
. D

ow
nl

oa
de

d 
fr

om
 a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
U

ni
ve

rs
ity

 o
f 

C
al

if
or

ni
a 

- 
Sa

n 
D

ie
go

 o
n 

01
/2

5/
17

. F
or

 p
er

so
na

l u
se

 o
nl

y.



RAYLEIGH-BÉNARD CONVECTION 719

1992) and the Küppers-Lortz instability (Tu & Cross 1992a) has been achieved
on the basis of the SH-formulation. One should note, however, that due to missing
higher-order derivative terms, the Busse balloon is in general not described sys-
tematically (Decker et al 1994).

3.3 Phase-Diffusion Equations

Even far above onset, the structure of periodic patterns far away from defects and
grain boundaries can be captured by nonlinear phase-diffusion equations. These
equations describe slow variations of the orientation and spacing of the convection
rolls (see Newell et al 1993 and references therein). Let a family of stationary,
periodic, and reflection-symmetric solutions be denoted by V(q, x) 4 uq(q • x)
with uq(f ` 2p) 4 uq(f), and let us write the actual state as Ṽ(x, t) 4 uq[f(x,
t)]` corrections. Thus f(x, t) is the phase of a nearly periodic pattern, and
¹ f(x, t) 4 q(x, t) plays the role of the local wavevector,9 which we assume to
vary slowly in space and time. In a seminal paper, Pomeau & Manneville (1979)
showed that the phase dynamics can be described by a diffusion equation. They
also found that at the long-wavelength instability boundaries of the Busse balloon,
certain diffusion constants changed sign.

Subsequently, a rotationally invariant form of the phase equation, which also
included the mean flow U, the Cross-Newell equation, was derived (see Newell
et al 1993 and references therein). In its simplest form, the equation reads

]
s(q) u ` Uq 4 ¹ • (B(q)q) (7)

]t

11 2curl U 4 1cr e • ¹ 2 [q¹ • (qA )]. (8)z z

Phase equations are very valuable in the analysis of nonideal periodic patterns.
This applies, for instance, to the dynamics of dislocations in an ISR pattern. Here
dislocations climb with a velocity v 4 a(q 1 qd(e)) where a is almost constant
and q is the wavenumber of the pattern (Tesauro & Cross 1986). Consequently,
a dislocation is stationary for a roll pattern with background wavenumber q 4
qd(e). Also using this approach, Newell et al (1991) determined a wavenumber
qf (e), qf (0) 4 qc, which is selected by concentric patterns. Those authors dem-
onstrated as well that at small r, concentric patterns become unstable at a certain
quite-small value of e due to the coupling to the mean flow. It has been suggested
by Cross & Tu (1995) and confirmed by Plapp et al (1998) that the competition
of the two selected wavenumbers qf and qd determines the dynamics of the giant
spirals, as discussed in Section 6.3.

The possible defect structures in natural convection patterns, such as disloca-
tions or grain boundaries, correspond to singularities in a two-dimensional (wave)

9In a real field the wavevector (qx, qy) is equivalent to 1qx, 1qy; i.e. q(x) is actually a
director field.

A
nn

u.
 R

ev
. F

lu
id

 M
ec

h.
 2

00
0.

32
:7

09
-7

78
. D

ow
nl

oa
de

d 
fr

om
 a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
U

ni
ve

rs
ity

 o
f 

C
al

if
or

ni
a 

- 
Sa

n 
D

ie
go

 o
n 

01
/2

5/
17

. F
or

 p
er

so
na

l u
se

 o
nl

y.



720 BODENSCHATZ n PESCH n AHLERS

vector field and are well classified in differential geometry. Recently this insight
has considerably improved the understanding of the solution manifold of the
phase-diffusion equations (Newell et al 1996, Bowman et al 1998, Ercolani et al
1999). Although the underlying basic hydrodynamic description of convection
patterns is nonpotential, the phase equations often derive from a Lyapunov func-
tional (Newell et al 1996). Whether such a potential could provide some general
selection principle according to which natural patterns approach stationary con-
figurations remains an open question.

3.4 Numerical Simulations

The (large) system of ODEs in Equation 4 has become very useful for the gen-
eration of numerical solutions of the Boussinesq equations (Decker et al 1994,
Pesch 1996). In contrast to the standard discretization schemes, the use of Equa-
tion 4 permits a description of the dynamics in terms of the most important active
modes [ 5e(k) not too small]. Passive modes can be adiabatically eliminated. In
the numerical implementation, the most time-consuming manipulations can be
based on the fast Fourier transformations (FFT). The speed of this pseudospectral
method permits the simulation of the large-aspect-ratio systems used in experi-
ments. In the time-stepping scheme, the linear operator is treated fully implicitly,
whereas an explicit Adams-Bashforth scheme is used for the nonlinear part. A
time step as large as 0.02tv yields stable performance. One must keep in mind
that diffusive changes of the patterns take place on much longer timescales (C2tv).
However, simultaneously one must resolve processes on timescales of order tv,
such as the nucleation or annihilation of defects or the fast core rotation of spirals.
The code can also be used to approximate nonperiodic boundaries by the use of
suitable spatial ramps in the Rayleigh number. An example is given in Figure 1.
The simulation was started from random initial conditions and shows the pattern
after transients had died out. Apparently it is not difficult to reproduce the com-
mon experimental situation where the rolls meet the boundaries perpendicularly.10

We note that the dislocations and grain boundaries in the outer part of the annulus
are required to keep the local wavenumber inside the Busse balloon.11

Further examples of simulations are shown in the sections below (see also
Pesch 1996). Another advantage of the direct simulations is the ability to use an
experimental shadowgraph picture as an initial condition and then reconstruct the
entire 3-D convective structure corresponding to the experiment (see Section 7).

10This is not to imply, however, that this simple spatial variation of the control parameter
is in any sense equivalent to the physical lateral boundary conditions relevant to real
experiments.
11This work was presented at the workshop Spatiotemporal Characterization of Spiral
Defect Chaos at Los Alamos National Laboratory, January 4–5, 1999. Sensoy & Greenside
(1999) investigated similar structures within the SH-equations.
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RAYLEIGH-BÉNARD CONVECTION 721

Figure 1 Radial roll
structure for an annulus for
r 4 1.0 at e 4 0.4. (IV
Melnikov and W Pesch,
unpublished).

4. FLUCTUATIONS

As described in Section 3, the study of convection patterns is usually based on a
stability analysis of the deterministic hydrodynamic equations. Such a theory
gives a sharp threshold at R 4 Rc, with u and U equal to zero below it (see
Equations 1 and 2). For R . Rc, or equivalently e . 0, convection rolls with
wavenumber qc are predicted to initially grow exponentially in time and thereby
to destabilize the motionless state. One has to keep in mind, however, that the
‘‘thermal noise’’ of the microscopic degrees of freedom has been averaged away
in this treatment. This noise drives fluctuations of the macroscopic velocity and
temperature fields about their mean values even below the bifurcation. For a
constant noise intensity and in the absence of nonlinear saturation, the amplitudes
of these fluctuations diverge as the bifurcation point is approached. For this rea-
son, the deterministic approach breaks down in the close vicinity of onset (e '
0). This is analogous to second-order phase transitions in equilibrium thermo-
dynamics, where fluctuations become large close to the critical temperature.

This problem received considerable theoretical attention about three decades
ago (for a review, see Cross & Hohenberg 1993). The analysis was based on the
stochastic Navier-Stokes equation given by Landau & Lifshitz (1959) and on
stochastic Ginzburg-Landau and Swift-Hohenberg equations. Time-dependent
fluctuating convective flows with zero mean but finite mean-square ampli-
tudes ^A2& were predicted for e , 0. At e 4 0, ^A2& diverges in proportion to
(1e)11/2 until nonlinear saturation sets in. However, estimates of the noise
strength suggest that the fluctuations should remain unobservably small at exper-
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722 BODENSCHATZ n PESCH n AHLERS

Figure 2 (Left) Shadowgraph snapshot of fluctuations below the onset of convection (e
4 13 2 1014). (Right) The average of the square of the modulus of the Fourier transform
of 64 images like that on the left. After Wu et al (1995).

imentally accessible values of e because the thermal energy kBT (kB is the Bolz-
mann constant) that drives them is many orders of magnitude smaller than the
typical kinetic energy of a macroscopic convecting fluid element (see Swift et al
1991, Hohenberg & Swift 1992). Nonetheless, it has now become possible to
observe the fluctuating convection patterns below the bifurcation directly and to
make quantitative measurements of their root-mean-square (rms) amplitudes.

The first system for which this became possible was electroconvection in a
nematic liquid crystal (Rehberg et al 1991). Even though that system is ‘‘mac-
roscopic,’’ it is particularly susceptible to noise because the physical dimensions
are only of order 10 lm and because the orientational elastic constants (which
determine the macroscopic energy to which kBT has to be compared) are excep-
tionally small. More recently, fluctuations were observed also for RBC by Bod-
enschatz et al (1992a), and quantitative measurements of their amplitudes were
made by Wu et al (1995).12 These measurements were made possible by maxi-
mizing the sensitivity of the shadowgraph method (de Bruyn et al 1996) and by
careful digital image analysis. The left part of Figure 2 shows a processed image
of a layer of CO2 of thickness 0.47 mm at a pressure of 29 bar and at a mean
temperature of 32.08C. The sample was at e 4 13 2 1014, very close to but
just below the bifurcation point. The fluctuating pattern is barely detectable by
eye. The right half of the figure shows the average of the structure factors (squares

12Measurements on binary-mixture convection by Schöpf & Rehberg (1994) and by Quen-
tin & Rehberg (1995) involved pseudo-one-dimensional sample geometries for which theo-
retical predictions are more difficult to obtain due to the influence of the sidewalls.
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RAYLEIGH-BÉNARD CONVECTION 723

Figure 3 Mean-square am-
plitudes of the temperature fluc-
tuations below the onset of
convection of a layer of CO2 of
thickness 0.47 mm and a mean
temperature of 328C. The solid
(open) circles are for a sample
pressure of 42.3(29.0) bar. The
two lines are the theoretical pre-
dictions. Note that there are no
adjustable parameters. After
Wu et al (1995).

of the moduli of the Fourier transforms) of 64 such images, clearly demonstrating
that the fluctuations have a characteristic wavenumber q that was found to be in
quantative agreement with the critical wavenumber qc 4 3.117 for RBC. The
ring in Fourier space is azimuthally uniform, reflecting the continuous rotational
symmetry of the RBC system.

The power contained within the ring in Fourier space can be converted quan-
titatively to the mean-square amplitude of the temperature field (Wu et al 1995,
de Bruyn et al 1996). Results for the temporal and spatial average dT 2(e) of the
square of the deviations of the temperature from its local time average (pure
conduction) as a function of e at two different sample pressures are shown in
Figure 3. The data can be described quite accurately by the powerlaw dT 2 }
e11/2, as predicted by theory.

The amplitudes of the fluctuating modes below but close to the onset of RBC
were calculated quantitatively from the stochastic hydrodynamic equations (Lan-
dau & Lifshitz 1959) by van Beijeren & Cohen (1988), using realistic (no-slip)
boundary conditions at the top and bottom of the cell. For the mean-square tem-
perature fluctuations, their results give (Hohenberg & Swift 1992, Wu et al 1995)

2DT Fc2 2dT (e) 4 c̃ , (9)1 2Rc 4 1e!

with , andc̃ 4 3q R 4 385.28!c c

k T 2rqB cF 4 2 , (10)
2qdm n s Ro o c

with n0 4 0.385 and s0 4 0.0796. Using the fluid properties of the experimental
samples, one obtains the straight lines in Figure 3. The agreement between theory
and experiment is very good. This agreement lends strong support to the validity
of Landau’s stochastic hydrodynamic equations (Landau & Lifshitz 1959).

Sufficiently close to the bifurcation, the fluctuations should induce deviations
from the usual mean-field behavior implied by Equation 9 (Hohenberg & Swift
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724 BODENSCHATZ n PESCH n AHLERS

Figure 4 Straight parallel rolls for circular and square sidewalls. (a) From Liu & Ahlers
(1996) at e 4 0.07 with C 4 30 and r 4 0.69. (b) After Cakmur et al (1997a) at e 4
0.3 with C 4 50 and r 4 1.03.

1992). In the case of Rayleigh-Bénard convection, this deviation is predicted to
take the form of a hysteretic bifurcation (Hohenberg & Swift 1992, Brazovskii
1975). However, this should become observable only in the range |e| & 1015 or
so, which is not expected to become experimentally accessible in the near future.

5. IDEAL STRAIGHT ROLLS

Above but close to onset, the predictions of the linear and weakly nonlinear theory
(Schlüter et al 1965) were reproduced quantitatively in a number of experiments
(see Cross & Hohenberg 1993 and references therein). A particularly detailed
study was carried out by Hu et al (1993). For cases where the fluid properties are
known sufficiently well, measurements yielded values of Rc within a few percent
of the theoretical value, Rc 4 1708 (de Bruyn et al 1996). Experiments with
quasi-Boussinesq fluids (see Sect. 3) yielded a supercritical bifurcation at Rc.
Above onset, almost-defect-free roll patterns with wavenumbers close to the theo-
retical value qc 4 3.117 were found. Examples are shown in Figures 4a and b
for a circular and a square cell, respectively. Beyond Rc the amplitude of the
shadowgraph signal (Figure 8 of Hu et al 1993), proportional to the amplitude of
the temperature field U, grows as as is evident, for instance, from the opene!
circles in Figure 12 below in Section 6.2. The convective heat transport, usually
expressed as the Nusselt number N (the ratio of the effective conductivity of the
fluid to the conductivity in the absence of convection), can be written as N 4
S1e for small positive e and shows no hysteresis at the bifurcation (Figure 4 of
Hu et al 1993). However, S1 usually is somewhat smaller than the prediction
(Schlüter et al 1965) for the laterally infinite system. The reason for this may be
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that the flow near the walls, as well as near any defects that may be present, is
suppressed.

At values of e larger than about 0.1 the rolls in circular cells develop strong
curvature and defects appear in the patterns. These interesting boundary-induced
phenomena are discussed in Section 6.1. Due to their geometry, rectangular cells
are better suited for the study of parallel straight rolls over a wide e-range. Patterns
can be created that come close to the theoretical idealization of ISR, and they
persist even at large e. In the remainder of this section, we review investigations
of the Busse balloon and its limiting instabilities for ISR in cells with square
geometry.

For r . 1, Figures 5a, c, and e demonstrate that stable ISR patterns can be
observed experimentally over a wide range of e (Cakmur et al 1997a, Plapp 1997).
Even above the OSC-instability boundary (Figure 5e) the pattern was ISR-like.
However, ISR formed only when a perfect parallel-roll pattern was initially pre-
pared by special procedures (described below). The generic attractor starting from
random initial conditions is a spatio-temporal chaotic state called spiral-defect
chaos (SDC) (Morris et al 1993), which is discussed in detail in Section 7. In
Figure 5, images of SDC are compared with ISR at the same e-values.

Ideal straight rolls were initialized in a square cell of C 4 50 by a special
protocol.13 It involved inclining the cell to induce a large-scale flow that aligned
the rolls (Cakmur et al 1997a, Plapp 1997, Jeanjean 1997). After appropriate
equilibration procedures, the rolls could then be used to explore the Busse balloon.
The stability boundaries were determined by suitable quasistatic changes of e as
indicated by the arrows in Figure 6. When the SV-boundary at the high wave-
number was crossed (circles), the SV-instability occurred and nucleated one or
two defect pairs by the well-known ‘‘roll pinching’’ (Croquette 1989a). As shown
in Figure 7, the defects traveled along the roll axis to the boundaries, destroying
one or two roll pairs and thus changing the wavenumber back into the stable
regime (triangles). This way, Cakmur et al (1997a) were able to follow the SV
instability-boundary until they crossed the oscillatory instability-boundary (OSC).
As shown in Figure 6, good agreement between the theoretical predictions for
the laterally infinite system and the experiment was found.

Above the oscillatory instability line (OSC), a triangular traveling-wave pat-
tern is superimposed onto the rolls (Busse 1972, Croquette & Williams 1989a,b).
This can be seen already in Figure 5e, and an example is shown for left-traveling
waves in Figure 8A. Fourier-demodulation techniques are well suited for a
detailed investigation of such patterns (Rasenat et al 1990, de Bruyn et al 1996).
Whereas Figure 8B shows the power spectrum, Figures 8C and 8D show the real
part of the Fourier back-transform of the areas encircled by the black and gray
lines, respectively. The spatial disorder of the traveling waves is most evident in
the demodulated pattern shown in Figure 8D. The oscillatory instability is con-

13Only large wavenumbers close to the skewed-varicose stability-boundary were stable;
otherwise, cross-roll disturbances grew at the boundaries, leading to SDC.
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726 BODENSCHATZ n PESCH n AHLERS

Figure 5 (a) ISR and (b)
SDC at e 4 0.92; (c) ISR
at e 4 2.99 and (d) SDC
at e 4 3.0; (e) oscillatory
ISR and (f) oscillatory
SDC at e 4 5.08. For this
experiment C 4 50 and r
4 1.03. For each pair of
pictures only the initial
conditions were different.
The insets show a magni-
fied view of the oscillating
rolls. Whereas in (e) the
oscillations travel from
bottom to top, in (f) the
oscillations are very dis-
ordered. Often rotating
spoke pattern are found, as
seen in the insert of (f).
From Cakmur et al
(1997a).

vective (Croquette & Williams 1989b, Babcock et al 1994). Indeed, as shown in
Figure 8D, the amplitude of the left-traveling waves is observed to increase down-
stream. Consequently, it is not surprising that the measured onset of the oscillatory
instability for r 4 1.03 was found to be slightly larger than the theoretical one:
Growing fluctuations have not enough time to reach visible amplitudes before
they are absorbed at the lateral walls.

When e was decreased quasistatically starting from the oscillatory regime, the
ISR-pattern had a tendency to increase its wavenumber by contracting and nucle-
ating cross rolls at the boundaries parallel to the rolls (Cakmur et al 1997a). Spiral-
defect chaos then nucleated in the grain boundaries, and the ISR-state was
destroyed (see Sect. 7). It was still possible, however, to measure the CR-
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SV
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Figure 6 The stability boundaries of ISR for r 4 1.03 with experimental data. The
theoretical curves are denoted SV (skewed varicose), CR (cross roll), ECK (Eckhaus), and
OSC (oscillatory). The arrows indicate the path taken while increasing e. Open circles,
before SV-instability; upside-down triangles, after SV-instability; diamonds, onset of OSC-
instability; squares, localized CR-instability for decreasing e; solid circles, numerically
determined boundary for localized CR-instability; triangles, wavenumber of spiral defect
chaos as measured at the maximum of the azimuthally averaged power spectrum. From
Plapp (1997).

instability-boundary by decreasing e sufficiently rapidly so as to avoid pattern
relaxation in the bulk. Surprisingly, three different nonlinear evolutions of the
CR-instability were found. As shown in Figure 9A for e 4 0.80 5 0.15, a cross-
roll defect nucleated at one of the sidewalls and propagated in a direction that
increased the wavenumber in the wake. For e 4 0.57 5 0.15 the cross-roll defect
left behind a disordered totem-pole-like pattern while moving through the system
(Figure 9B). For e 4 0.25 5 0.10 the CR-instability occurred in the bulk (Figure
9C).

These local CR-instabilities were also found in numerical simulations when,
for fixed e, an ISR-pattern was initialized with two oppositely charged disloca-
tions and a wavenumber close to the CR-boundary. The results of the simulations
are as shown by the solid circles in Figure 6. In the simulations, the totem-pole
pattern leads to the nucleation of SDC.

Whereas the bulk instability is similar to the one observed for larger Prandtl
number fluids (Busse & Whitehead 1971), the other two are localized CR-
instabilities. Localized CR-instabilities were first observed by Croquette (1989a);
however, due to the small aspect ratio used in the experiment it was not possible
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728 BODENSCHATZ n PESCH n AHLERS

Figure 7 Time evolution of the skewed-varicose instability at e 4 2.26, r 4 1.07 [about
7.5 minutes (183tv) after e was increased from 2.23]. Pictures are spaced 0.54tv apart. From
Plapp (1997).

to study the full dynamics. The localized CR-instability has also been called a
bridging instability (Newell & Passot 1992, Assenheimer & Steinberg 1994) and
has been associated with a different nonlinear effect.

6. CIRCULAR CELLS

6.1 PanAm Patterns

As discussed above, close to onset, pseudo-ISRs are stable in circular as well as
in rectangular geometries. However, for circular cells there is a tendency to form
short cross rolls near that part of the sidewall where the rolls would otherwise be
parallel to the wall (see Figure 4a). The cross-roll patches, separated by grain
boundaries from the bulk, are a manifestation of an often-observed tendency for
rolls to terminate with their axes perpendicular to the sidewalls. This orientation
at the boundaries is also typically observed in numerical simulations without
forcing lateral boundary conditions (see e.g. Figure 1). Loosely speaking, this
configuration minimizes the friction experienced by the rolls at the walls. With
increasing e, this effect becomes more pronounced.14 In circular convection cells
it leads to enhanced roll curvature in the pattern interior. As the curvature
increases, the domain walls shrink and form focus singularities at the wall (wall

14For recent references see Croquette (1989b), Hu et al (1993, 1994, 1995a), Pocheau &
Daviaud (1997)
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Figure 8 (A) Left traveling oscillations; (B) power spectrum of (A) with marked demod-
ulation areas; (C) undistorted roll structure obtained by back-transform of the black-encir-
cled area in (B); and (D) disordered checkerboard structure obtained by back-transform of
the gray-encircled area in (B). For this example, e 4 5.1 and r 4 1.02. After Cakmur et
al (1997a).

foci). In relatively small-aspect-ratio systems, typically two wall foci form, and
then for obvious reasons the resulting structures often are referred to as PanAm
patterns. For larger C, however, three or more wall foci can form as e increases,
and more complicated structures arise. An example of a PanAm pattern is given
by the smallest sample shown in Figure 10B. More complicated textures are
shown in Figure 10A. While this situation is generic for quasi-static increase of
e, transient sidewall forcing can also select target patterns (see Section 6.2) that
(in the presence of some static sidewall forcing) are stable in the same e range
as the curved rolls with wall foci. This is illustrated by the larger samples in
Figure 10B.
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Figure 9 Cross-roll instabilities for r 4 1.1: (A) CR defect propagates from left to right,
thus increasing the pattern wavenumber (e 4 0.80 5 0.15); (B) CR defect propagates
from right to left, leaving behind a totem pole pattern (e 4 0.57 5 0.15); (C) CR-
instability in the sample interior (e 4 0.25 5 0.10). From Plapp (1997).

Figure 10 An example of (A) PanAm (e 4 0.34, r 4 1.39) and (B) target patterns (e
4 0.38, r 4 1.40) in the same convection cells with C 4 (48.4, 38.8, 28.4, 23.8, 19.1,
14.9) for different experimental paths. From Plapp (1997).
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Figure 11 The stability
boundaries of ISR for r 4
1.0. The data points are the
measured wavenumbers
selected by the domain
walls characteristic of
straight-roll patterns in cir-
cular containers. The plus-
ses are for C 4 41 (Hu et
al 1993) and the open cir-
cles are for C 4 29 (J Liu
et al, unpublished).

The competition between curvature and sidewall obliqueness was examined
theoretically by Cross (1982). A functional of the wavevector field was derived
that had contributions from wavenumber variations, from roll curvature, from
sidewall obliqueness, and from defects. The minimization of this functional drives
the selection of the pattern. Semiquantitatively, these predictions were confirmed
by experiments with r k 1 (Heutmaker et al 1985, Heutmaker & Gollub 1986,
1987). However, for r . 1, mean-flow effects are important. Indeed, it was shown
experimentally by Daviaud & Pocheau (1989) that suppression of the mean flow
dramatically reduces the roll curvature. When large-scale flows have a strong
influence on the pattern, the applicability of a model with a potential seems in
question even for relatively small e-values.

The stability of ISR is described by the Busse balloon (see Sects. 3 and 5).
The stable states are limited at the low-wavenumber side by the ECK- and the
CR-instabilities and at the high-wavenumber side by the SV-instability. An impor-
tant, as yet largely unanswered, question is which of the continuum of stable
states will be selected by the physical system. There is no known extremum
principle. Instead it appears that preferred wavenumbers are chosen by a given
set of boundary conditions, defects, and/or histories. For example, for a circular
cell of aspect ratio C & 60 the domain walls separating the cross rolls from the
main rolls permit a continuous wavenumber adjustment in the cell interior. It was
found experimentally for circular cells (Hu et al 1993; J Liu, KMS Bajaj, G
Ahlers, unpublished) that this leads to the selection of a unique wavenumber, as
shown by the plusses and open circles in Figure 11. When e reaches a value of
about 0.1, the selected wavenumber is close to the SV-instability. Indeed, the roll
curvature that prevails at this point (wall foci developed) leads to a significant
wavenumber distribution, with the largest q in the sample interior. These largest
wavenumbers cross the SV-instability at e . 0.11. Then defect nucleation begins
in the cell interior, as noted by Croquette (1989b). Although the elimination of a
roll pair by the defect creation and migration moves the system back into the
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stable interior of the Busse balloon, the wall foci emit new rolls, and a time-
dependent state persists (Croquette 1989b; Hu et al 1994, 1995a). This is dis-
cussed further in Section 6.4.

6.2 Targets

Even in very carefully constructed experimental cells, the existence of sidewalls
can introduce horizontal thermal gradients near them. This can have a surprisingly
strong impact on the pattern-formation processes (see e.g. Cross & Hohenberg
1993, Sect. VIII.D1, and de Bruyn et al 1996).15 The gradients have the tendency
to drive flow fields that have the symmetry of the walls. Static (time independent)
forcing occurs, for instance, when the conductivity of the walls is significantly
different from that of the fluid and the conductivity of the top or bottom plate is
finite, albeit large. In some experiments, static forcing was induced deliberately
by embedding a heater in the sidewall (see, for instance, Croquette 1989a, Morris
et al 1996). Sidewall forcing can also be dynamic due to a mismatch of the thermal
diffusivity between sidewall and fluid. In that case, a change in, for instance, the
bottom-plate temperature will cause vertical temperature profiles that relax at
different rates in the wall and in the fluid, again leading to (in this case transient)
horizontal gradients near the wall.

In circular cells, sidewall forcing (transient or static) can lead to concentric
patterns, also known as targets, like those in Figure 10B. Such patterns have been
investigated in numerous experiments.16 They are found to be stable for small e
until, with increasing e, an instability known as the focus instability (Newell et
al 1990) occurs at their center.

An interesting aspect of concentric patterns in their stable range (below the
focus instability) is an anomalous variation of the amplitude A of their umbilici,
i.e. target centers, which was noted qualitatively by Croquette et al (1986a). This
is illustrated by the solid circles in Figure 12, which represent more recent quan-
titative measurements (Hu et al 1993) of A2 as a function of e on logarithmic
scales. The data can be fit by a line with a slope of 1⁄2, indicating that A } e1/4.
This can be compared with the e-dependence of the roll amplitude well away
from the center of the pattern, which is shown as open circles and which is
consistent with A } e1/2 as predicted on the basis of the Landau equation for a
supercritical bifurcation. The unusual behavior of the umbilicus amplitude occurs
because the Landau equation is not applicable (Brown & Stewartson 1978, Ahlers

15The origin and effect of static and dynamic sidewall forcing has been investigated by
numerous authors, both theoretically and experimentally. Among them are Ahlers et al
(1981), Cross et al (1983), Ahlers et al (1984), Steinberg et al (1985), Bodenschatz et al
(1991, 1992a), Hu et al (1993), de Bruyn et al (1996), Plapp & Bodenschatz (1996), Plapp
et al (1998).
16Among them are Koschmieder (1974), Koschmieder & Pallas (1974), Croquette et al
(1983), Bodenschatz et al (1991, 1992a), Hu et al (1993), Plapp & Bodenschatz (1996),
Plapp et al (1998).
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RAYLEIGH-BÉNARD CONVECTION 733

Figure 12 The ampli-
tude of the umbilicus
(solid circles), and of the
rolls away from the center
(open circles), in a circular
cell with C 4 43 as a func-
tion of e on logarithmic
scales. After Hu et al
(1993).

et al 1981) at the pattern center, as was explained by Pomeau et al (1985), who
predicted the exponent value 1⁄4 in the limit of a large-aspect-ratio cell.

The events that occur as e is increased beyond the focus instability depend on
the strength of the sidewall forcing, the wavenumber, the aspect ratio, and the
Prandtl number. They have not yet been predicted by theory. One set of events
observed in experiments is that the umbilicus drifts away from the center and
toward the wall, thus destroying the concentric pattern (Hu et al 1993). Another
involves the periodic emission of outward-traveling concentric rolls (Hu et al
1993). Yet another observed scenario is that the umbilicus moves slightly off
center, and then re-stabilizes at a smaller pattern wavenumber by destroying one
concentric roll pair near it (Croquette et al 1983, Steinberg et al 1985). A further
mechanism involves an off-center displacement of the umbilicus, which is fol-
lowed by radial oscillations of the umbilicus position (Plapp 1997).

When the focus instability leads to a change in the number of concentric
convection rolls and the sidewall forcing is sufficiently strong, the concentric
nature of the pattern can be maintained over a large e range and the umbilicus
provides a wavenumber-selection mechanism.17 The selected wavenumber
depends significantly on the Prandtl number and can be larger (small r) or smaller
(large r) than qc. It was calculated by several authors (Manneville & Piquemal
1983, Cross 1983, Buell & Catton 1986a), and there is generally good agreement
with the measurements.

17Experiments were performed, for instance, by Koschmieder (1974), Croquette et al
(1983), Croquette & Pocheau (1984), Steinberg et al (1985), Croquette et al (1986a), Plapp
(1997), and Plapp et al (1998).
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Figure 13 (a) to (l): Birth of a one-armed clockwise-rotating spiral for C 4 43 and r
4 1.38 after e was increased from 0.58 to 0.60. Pictures (a) to (h) are spaced 0.5tv apart,
and (h) to (l) are at intervals of 1.5tv. (m) to (p): A rotating, single-armed spiral. The
pictures are spaced 82tv , or a 1/4 period, apart. From Plapp (1997).

6.3 Giant Spirals

Multi-armed, giant, rotating spirals were observed in a number of experiments
with r . 1.18 They were discovered by Bodenschatz et al (1991), and studied in
detail by Plapp and coworkers (Plapp & Bodenschatz 1996, Plapp 1997, Plapp
et al 1998), who investigated their formation, dynamics, selection, and stability.
Multi-armed spirals can be obtained by appropriate jumps in e or by increasing
e slowly. Some static sidewall forcing seems required to prevent the center of the
large structure from drifting toward the sidewall. One example of spiral creation
is illustrated in Figure 13. In this case, the umbilicus of an initial target moved
off center after e was increased quasistatically. Compression of the rolls in the

18Bodenschatz et al (1991, 1992b); Assenheimer (1994); Plapp & Bodenschatz (1996);
Plapp (1997); Plapp et al (1998)
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Figure 14 (a): Snapshot of a three-armed spiral for C 4 38.8, e 4 0.79, and r 4 1.37.
(b): Average of images like that in (a), covering one period of rotation. (1) to (12) show
the fast core rotation over one period. Here frames are spaced 0.44tv apart. From Plapp &
Bodenschatz (1996) and Plapp (1997).

lower right part of the pattern increased the local q beyond the SV-instability and
caused a dislocation pair to be formed. One of the dislocations moved to the
center of the target while the other remained at a finite radius from it, thus creating
a one-armed spiral.

N-armed spirals rotate slowly by emitting radially traveling waves that are
annihilated by N dislocations that rotate synchronously with the spiral heads (Bod-
enschatz et al 1991, 1992b). Beyond the dislocations the spiral arms are sur-
rounded by a target pattern. The core of an N-armed spiral consists of N bound
dislocations of equal topological charge (Plapp et al 1998). By time-averaging a
giant spiral over one rotation period, it is possible to recover the underlying target
pattern (Plapp et al 1998). This is shown for the example of a three-armed spiral
in Figure 14. Also shown is the fast core rotation that can be observed for multi-
armed spirals (Plapp & Bodenschatz 1996, Assenheimer 1994).

With increasing e, giant spirals can adjust their wavenumber by changing the
position of the core with respect to the revolving dislocation (Plapp 1997). The
spiral either winds up or unwinds to adjust its wavenumber, as illustrated in Figure
15. Once the wavenumber is adjusted, the spiral’s tip at the core is locked in
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Figure 15 Wavenumber
adjustment of a one-armed
spiral for C 4 28.4 and r
4 1.38. (a) e 4 0.55 and
(b) e 4 0.72. The spiral
adjusts its wavenumber by
unwinding. Note the posi-
tion of the outer defect in
relation to the core. From
Plapp (1997).

relation to the outer defect. In fact spirals are found to decrease their wavenumbers
continuously with increasing e, as shown in Figure 17.

As e is increased further, the spiral structures become unstable (Plapp 1997,
Plapp et al 1998). Typically the cores move off center and cause a local increase
of q beyond the SV instability. The pattern develops many dislocations. Depend-
ing on parameters, the structure evolves into a many-armed spiral, a texture with
wall foci, or spiral-defect chaos. Interestingly, as shown in Figure 16, bistability
between rotating spirals, and the spatio-temporal chaotic planforms of spiral-
defect chaos and PanAm-like patterns were observed.

The rigid rotation of a stable giant spiral requires that the radial waves that
propagate from the center are annihilated at a radius r 4 rd by the circular motion
of the outer defect. Thus for r . rd, a concentric stationary roll pattern results.
Arguments based on the phase-diffusion equation (see Sect. 3.3) can be used to
quantitatively describe the large-scale rotation of the spirals. It was proposed
(Cross & Tu 1995, Cross 1996, Li et al 1996) that the rotation of giant spirals
requires the reconciliation of two competing wavelength-selection mechanisms
acting far away from the spiral’s core, namely wavelength selection by defect
climb and target wavelength-selection by radially traveling waves. Meanflow
effects are important in selecting the velocity of a dislocation in ISR, as was
pointed out first by Siggia & Zippelius (1981a). Later Tesauro & Cross (1986)
predicted that the motion of a dislocation at sufficiently high e should be captured
by

v 4 b(e)(q 1 q (e)), (11)d d

where qd is the wavenumber for which a dislocation does not move and q is the
background wavenumber (defined in Plapp et al 1998). It was argued (Cross &
Tu 1995, Cross 1996, Li et al 1996) that the relation (Equation 11) should apply
as well to the dynamics of the outer defects of giant spirals, i.e., xd 4 vd(r)/r for
q 4 q(r). Plapp et al (1998) verified this relationship in both experiments and
simulations. They found that for r 4 1.4, the wavenumber qd(e) decreased with
increasing e. This is shown for the example of a cell of C 4 38.8 in Figure 17.

Away from the core of the spiral, the wavefronts deviate only slightly from
circular, and their wavenumber-selection properties are thus well approximated
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Figure 16 Two-armed spiral patterns in cell 1 and 4. Spiral defect chaos in cell 2. Tex-
tures with wall foci in cell 3 and the unmarked cells. For these images, e 4 0.98 and r
4 1.4. From Plapp et al (1998).

by those of targets. Targets select a specific wavenumber qt(e) (Newell et al 1990)
(see also Sect. 6.2). If the prevailing q differs from qt, spirals will thus attempt
to adjust their wavenumber by emitting circular waves of frequency xt(e). From
the nonlinear Cross-Newell phase-diffusion equation (Newell et al 1990), one
finds

x 4 a(q (e) 1 q)/r, (12)t t

where a 4 2D\(qt), D\(q) is the parallel diffusion constant, and r is the distance
from the center of the target. The numerical value of the parameter a can be
calculated from the growth rate r(K) at qt of the Eckhaus instability as a 4
(12r(K2)/K2)|Kr0, where K is the wavenumber of the disturbance (Plapp et al
1998).

Plapp et al (1998) measured qt from the target patterns they observed for small
e and found quantitative agreement with the theoretical predictions by Buell &
Catton (1986b). By extrapolating qt(e) to larger e, and by measuring the spiral-
selected wavenumber q(e), they were able to determine a(e). Again, they found
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2.0 2.5 3.0 3.5
0.0

0.5

1.0
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ZZ

q(d)

ε 11
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1
1

✔
✔
✔
✔
✔
✔✔

✔
✔
✔
✔
✔
✔✔

✔
✔

✔
✔

✔
✔
✔
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44
44
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qt

qd

Figure 17 Wavenumbers selected by targets, spirals, and dislocations for a circular cell
of C 4 38.8 for r 4 1.4. The region marked qd gives the experimentally (squares) and
theoretically (triangles and dashed line) determined dislocation-selected wavenumbers.
The open circles show the target-selected wavenumber qt and the solid line is the extrap-
olation to larger e. The square symbols marked 1, 3, and 4 represent the selected wave-
numbers of one-, three-, and four-armed spirals. Also shown is the Busse balloon. After
Plapp (1997).

good agreement with the numerically determined value obtained from the growth
rate of the Eckhaus instability.

In the theoretical calculations it is implicitly assumed that the coupling by
mean flow between the spiral’s core and the orbiting dislocations does not play
an important role, at least not for the determination of the rotation frequency. In
Figure 18, a snapshot of the central region of a right-handed spiral is shown. Note
that the induced mean flow is indeed confined to the core region. Surprisingly,
the mean flow is in a direction that, in principle, has the tendency to unwind the
spiral locally by advection. It seems clear that the coupling of the tips of multi-
armed spirals by mean flow is responsible for the fast dynamics at their core.

In summary, the rotation of on-center, giant spirals can be understood in terms
of two competing wavelength-selection mechanisms. As shown in Figure 17, the
revolving defects attempt to select a small wavenumber, whereas the target-like
curvature of the rolls attempts to select a larger wavenumber. Thus the rotating
N-armed spirals select an intermediate wavenumber where both selection mech-
anisms are in balance. It has to be noted, however, that the more complex situa-
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Figure 18 The core region of a
right-handed, one-armed spiral
from numerical simulations at r
4 1. The arrows indicate the
strength and direction of the
mean flow.

tions, such as the dynamics of off-center spirals, the core rotation, and the spiral
instability, are not understood and remain a challenge.

6.4 Textures

Here we discuss in more detail typical sidewall-mediated phenomena that occur
in circular cells and lead to increasing disorder and to persistent dynamics as e
is increased. For e & 0.1, we saw in Section 6 and Figure 11 that the selection
process due to cross rolls yields mean wavenumbers that, with increasing e,
approach the SV-instability. In addition, roll curvature increases and the oblique-
ness of the roll axes relative to the sidewalls decreases with increasing e. This
process leads to a broadening wavenumber distribution throughout the cell, with
the largest wavenumbers typically in the center of the sample. This is illustrated
by images (a) and (b) in Figure 19 and described quantitatively by the results
shown in Figure 20 that were obtained from real-space image-analysis by Hu et
al (1995a). Figure 20a gives results for the average obliqueness b [ ^ |n•s|& (n is
the normalized roll wavevector near the wall and s is the sidewall normal vector),
where the average is taken along the sidewall and over many statistically inde-
pendent images. One sees that b decreases with increasing e in the range e &
0.17 (for larger e it remains essentially constant). The average roll curvature c [
^ |¹ • n|&, taken over the cell interior and over many statistically independent
images, increases over the range e & 0.13 and then remains essentially constant
until the onset of SDC, near e 4 0.6, causes it to rise dramatically.

As noted by Croquette (1989b), the compression of the rolls in the interior,
which accompanies the enhanced roll curvature, causes the wavenumber in the
cell center to exceed the SV-instability when e . 0.11 and leads to the formation
of dislocation pairs. This can be seen in Figure 19b. These defects then travel
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Figure 19 Patterns in circular cells for r . 1.0. (a): e 4 0.09, C 4 40. (b): e 4 0.12,
C 4 41. (c): e 4 0.34, C 4 41. From Hu et al (1993) and Hu et al (1995a).

Figure 20 (a) Sidewall obliqueness and (b) average roll curvature in a circular cell with
C 4 40 and r 4 1.0. The vertical bars give the standard deviations of the distributions
used to calculate the average values. From Hu et al (1995a).

toward the cell wall by a combination of climb and glide in a direction relative
to the roll axes that is determined by the direction of the SV perturbation with
the maximum growth rate (Hu et al 1997). The result of this process is a reduction
of q to a value less than qSV and thus of a re-stabilization of the pattern. However,
the domain walls emit new rolls, which gradually re-compress the ones in the
center and thus lead to a persistent time dependence. This case is an example of
the creation of a time-dependent state via the selection of an unstable state. A
similar situation prevails for Taylor-vortex flow (TVF), where an Eckhaus-
unstable state can be selected for a certain family of spatial ramps in the control
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RAYLEIGH-BÉNARD CONVECTION 741

Figure 21 Selected mean
wavenumbers as a func-
tion of e. The solid circles
are from Morris et al
(1996) for C 4 78 and r
4 0.95. The crosses are
from Hu et al (1995a) for
C 4 40 and r 4 0.98. The
large open circles are the
onset at es of SDC. After
Hu et al (1995a).

parameter (Riecke & Paap 1987, Ning et al 1990, Wiener et al 1997). The TVF
case was examined in detail theoretically (Riecke & Paap 1987). The selected
wavenumber, the value of e for the onset of time dependence, and the frequency
of the events beyond onset were calculated, and there is good agreement between
experiment (Ning et al 1990) and theory. In the RBC case we do not know of
predictions for the selection involving the domain walls, and the problem involv-
ing curved rolls is two-dimensional and thus more complicated than the TVF
case. Above the onset of time dependence, the experiments showed that the pro-
cess can be periodic or chaotic, apparently depending sensitively on e, C, and r.

As e increases further, the domain walls shrink in length. Near e 4 0.13 they
typically have contracted to point singularities known as wall foci (Hu et al 1994,
1995a). Examples can be seen in Figures 19c and 10A. Meanwhile, the roll cur-
vature has saturated at a value that is independent of e over the range 0.13 &
e & 0.6 (see Figure 20b). Like the domain walls, the wall foci emit rolls and thus
keep the dynamics of the pattern sustained. The frequency of roll emission
increases strongly with increasing e (Hu et al 1995a). Other defect structures
besides the SV-generated dislocations occur as well in this e-range, as can be
seen in Figure 19c. The most dominant are oscillating domain-wall structures in
the cell interior where rolls meet at an angle (Hu et al 1995a). Examples are
visible near the top and bottom of Figure 19c. The role of these various structures
in the dynamics of the pattern is not understood in detail.

The evolution with e of the mean wavenumber19 ^q& is shown as crosses in
Figure 21 for a sample with C 4 40. As we saw in Section 5, ^q& first moves to

19^q& was determined by calculating the first moment of the structure function S(q) (the
azimuthal average of the square of the modulus of the Fourier transform of the images;
see Morris et al 1996).
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742 BODENSCHATZ n PESCH n AHLERS

larger values as e increases. When SV events are first encountered near e . 0.11,
^q& turns around and evolves along a line that is parallel to the SV boundary.
Throughout this e-range, the wavenumber in the cell center is very close to qSV,
and repetitive SV events are taking place. Near e 4 0.6, where SDC first emerges,
^q& moves further away from the SV boundary and into the Busse-balloon interior.

Interestingly, the behavior of ^q& is quite different for very large C. This is
illustrated by the data taken by Morris et al (1996), which are for C 4 78 and
which are given in Figure 21 by the solid circles. In this case the system never
approaches the SV-instability. Apparently, in very large systems different types
of defects appear in the pattern even at quite small e and lead to a selection
mechanism that differs from the domain-wall mechanism. The different path in
the e 1 q plane leads to the onset of SDC at the much smaller value es . 0.2.

6.5 Hexagons

Experiments in RBC are usually designed to yield small temperature differences,
so that the temperature dependence of material properties may be neglected and
the Oberbeck-Boussinesq approximation (see Sect. 3) may be used in the corre-
sponding theory. In that case the bifurcation is supercritical and leads to ISR, as
discussed in Sections 3 and 5. However, in experiments with larger temperature
differences non-Oberbeck-Boussinesq (NOB) effects are important. They have
been discussed theoretically by several authors and most systematically by Busse
(1967), who introduced the parameter

4

3 4 c 3 . (13a)o i i
i40

to describe them quantitatively. Here c0 4 1Dq/ , c1 4 D(aq)/ , c2 4q̄ (2āq̄)
Dm/ , c34 Dk/ , and c4 4 DCP/C̄P. The quantities Dq, etc., are the differences¯m̄ k
in the values of the property at the bottom (hot) and top (cold) end of the cell,
and , etc., denote their values at the mean temperature 0.5 (Tb ` Tt) in the staticq̄
case. The coefficients 3i were first calculated in the limit r r ` by Busse (1967).
A new calculation (Tschammer 1997) yielded the full expressions20

3 4 2.676 1 0.361/r,0

(13b)

3 4 16.631 1 0.772/r,1

3 4 2.765,2

3 4 9.540,3

20The value of 33 differs significantly from the original calculation by Busse (1967).
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RAYLEIGH-BÉNARD CONVECTION 743

3 4 16.225 ` 0.386/r.4

In NOB convection, the initial bifurcation is transcritical, and the nonlinear state
that forms beyond it consists of hexagonal cells. Consistent with the vertical
variation of the fluid properties, hexagons break the mirror symmetry at the hor-
izontal midplane of the sample because upflow and downflow at their centers are
not equivalent. For positive 3 (gases), hexagons have downflow in their centers,
whereas for negative 3 (liquids), that flow is upward (Graham 1933, Busse 1967).
To a good approximation, the hexagonal patterns near onset can be described by
three coupled real Ginzburg-Landau equations, which have a potential. Thus
many aspects of pattern formation in this system can be understood in variational
terms.

NOB convection was investigated in small-aspect-ratio systems, and interest-
ing results for the roll-to-hexagon transition were obtained (Ciliberto et al 1988,
Perez-Garcia et al 1990, Pampaloni et al 1992). Penta-hepta defects in the hex-
agonal pattern were investigated both experimentally (Ciliberto et al 1990, 1991)
and theoretically (Pismen & Nepomnyashchy 1993; Rabinovich & Tsimring
1994; Tsimring 1995, 1996). RBC with compressed gases made possible larger-
aspect-ratio experiments with much higher resolution in e than could be done
before (Bodenschatz et al 1991, 1992a,b, 1993). Bodenschatz et al (1991) were
able to resolve the theoretically predicted hysteresis associated with the transcrit-
ical bifurcation from conduction to hexagons (Busse 1967). This is shown in
Figure 22. As e was increased quasistatically, first only fluctuations (see Section
4) occurred (Figure 22A). Then hexagons were nucleated and expanded to fill
part of the cell (Figure 22B, C). This first value of DT at which the pattern formed
was taken as DTc, corresponding to e 4 0 at that spatial location. The true value
of DTc for the deterministic system should actually be slightly larger, because for
a transcritical bifurcation, the fluctuations in the experiment would be expected
to cause an earlier transition. The limited size of the patch in Figure 22C can be
attributed to very small variations of the cell thickness, which cause a slight spatial
variation of e. Clearly visible in Figure 22 are the fronts that separate regions
with and without convection. In the steady state, the fronts are located at those
spatial positions where the local e-value is equal to eT where the potentials of the
convecting and the conducting states are equal. When e was decreased quasisti-
cally, the hexagons shrank to a smaller patch (Figure 22D, E) and disappeared
when e reached eT at their location (Figure 22F). For the GL equations, one can
show that . Thus the measurement eT 4 1(2.0 5 0.1) 2 1013 cor-8oe 4 eT a9

responds to ea 4 1(2.3 5 0.1) 2 1013. This value may actually be slightly too
small because of the influence of the fluctuations on the measured DTc. The size
of the hysteresis loop 1ea of the deterministic transcritical bifurcation is given
by the theory of Busse (1967) and Equation 13a as ea 4 12.2 2 1013, in
excellent agreement with the experimental value.21

21The calculation of the theoretical values of ea, eT, and by Bodenschatz et al (1991)e8T
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Figure 22 Transcritical bifurcation to hexagons (C 4 86, r 4 1). (A): Fluctuating
pattern below the onset of convection. (B): Nucleation of hexagons, (C): The same e as
(B) but after transients have died out. (D)–(F): e is quasistatically decreased. The circular
pattern in the upper left hand of the figures is caused by a dust particle. The spot at the
lower right was caused by reduced reflectivity of the bottom-plate. Neither inhomogeneity
seemed to influence the experimental observations. After Bodenschatz et al (1991).

For e ' 0.02, perfect hexagonal patterns like the one shown in Figure 23A
were found in the experiment by Bodenschatz et al (1991). Remarkably, even
when e was increased by a jump, initial grain boundaries and defects annihilated,
and a well-ordered pattern was reached after about 15th. With further quasistatic
increase of e, rolls nucleated at the sidewalls above a certain e-value. After a long
transient, a pattern consisting of a single N-armed, rotating, giant spiral was
formed. Discrete steps in e of different sizes from the hexagon to the roll regime
were used to produce spirals with 0 , N # 13 (Bodenschatz et al 1992a). The
initial evolution of the nucleation of rolls is shown in Figures 23B, C, and D.
When e was quasistatically decreased from the n-armed spiral state, spirals like

(also in de Bruyn et al (1996)) needs to be reconsidered. The equation of state for CO2 is
now better known (de Bruyn et al 1996), and the new values of 3i (Equation 13b) should
be used. One obtains 3 4 4.0 for this experiment, which yields ea 4 12.2 2 1013 and

4 0.13, in excellent agreement with the experimental results. Note also typographicale8T
errors in [18] of Bodenschatz et al (1991): It should read Z 4 ab/D 1 sign (a) [a2b2/D2

` a2/2D]1/2 and the pressure should read 23.1 bar instead of 21.8 bar.
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RAYLEIGH-BÉNARD CONVECTION 745

Figure 23 (A) A defect-free hexagonal pattern. (B–D) Rolls nucleate at the sidewalls
and propagate into the pattern. (B), (C), and (D) are spaced 1500tv apart. After Bodenschatz
et al (1991, 1992a).

the one shown in Figure 24B and C decreased the number of their arms in steps
of one until a target pattern (Figure 24A) was formed. With further decrease in
e, hexagons nucleated at the sidewalls as shown in Figure 24D. After a transient,
a perfectly ordered hexagonal pattern was formed once again. As was the case
near eT, the transitions between hexagons and rolls could also be understood in
terms of the potential of the relevant Ginzburg-Landau equations. This transition
occurred near eT8 where rolls and hexagons had the same potential.

Another interesting topic is the structure and dynamics of penta-hepta defects
in hexagonal patterns, where instead of two neighboring hexagonal lattice cells,
a pair of pentagonal and heptagonal cells is observed.
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746 BODENSCHATZ n PESCH n AHLERS

Figure 24 Target (A), one-armed spiral (B), and two-armed spiral (C). (D): Pattern during
the transient from rolls to hexagons 2000tv after e was decreased from the stable target
(A) at e 4 0.108 to e 4 0.103. After Bodenschatz et al (1991, 1992a).

Ciliberto et al (1990, 1991) showed that such a defect requires that two of the
three superimposed roll amplitudes vanish at the defect position (as in a dislo-
cation), while the third one remains finite. An example of a moving penta-hepta
defect is shown in Figure 25A. Also shown in Figure 25C and D is the Fourier
demodulation into the three sets of rolls that make up the hexagonal pattern of
Figure 25A at two different times separated by 70.6tv. In this example the penta-
hepta defect moved with a combination of glide and climb of the dislocations in
the two roll patterns, while the third roll pattern remained dislocation free. The
dynamics of penta-hepta defects has been investigated theoretically (Pismen &
Nepomnyashchy 1993; Rabinovich & Tsimring 1994; Tsimring 1995, 1996).
Based on the three coupled Ginzburg-Landau equations (Busse 1967), Tsimring
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Figure 25 (A) Penta-
hepta defect in a hexago-
nal pattern for e 4 0.12.
(B) Modulus of the Fourier
transform of this pattern.
(C) The three sets of rolls
obtained by Fourier back-
transformation of the
encircled areas in (B). (D)
The sets of rolls 70.6tv
later than (C). After de
Bruyn et al (1996).

(1995, 1996) calculated the mobility of an isolated penta-hepta defect. He also
considered the interaction of a pair of penta-hepta defects. Only future experi-
ments will be able to tell whether the predictions of this theory are as successful
as their analogue in the case of electroconvection of nematic liquid crystals (Kra-
mer et al 1990). However, in analogy to the ISR case (see Section 6.3), mean
flow effects may become important once e is sufficiently large and a description
based on GL-equations may break down.

Recently, in an experiment using compressed SF6 gas, Assenheimer & Stein-
berg (1996) observed the coexistence of the two types of hexagons with upflow
and downflow at their centers. Later Bajaj et al (1997) confirmed this observation
in an experiment using acetone as a fluid. A picture of such a convection state is
shown in Figure 26. Assenheimer & Steinberg (1996b) found such patterns in a
cylindrical cell of aspect ratio C 4 80 for a Boussinesq fluid with 3 , 0.09 and
2.8 # r # 28 at e ' 4. They observed that the hexagonal planforms nucleated
at the centers of targets and spirals when e was increased quasistatically (Assen-
heimer & Steinberg 1996b, Aranson et al 1997). This is shown in a sequence of
images in Figure 27.

Bajaj et al (1997) observed the patterns for a smaller circular cell of C 4 55
for 3 , 0.4, r 4 4, and e . 4.5. In their experiment the hexagons nucleated
near sidewall foci. Clever & Busse (1996) showed numerically that up-down
hexagons constitute another stable attractor aside from rolls for the experimental
values of r.
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748 BODENSCHATZ n PESCH n AHLERS

Figure 26 Coexisting
up- and down-flow hexa-
gons together with rolls for
C 4 80 and r 4 4.5. The
hexagon wavelength is
about 20% larger than the
roll wavelength. From
Assenheimer & Steinberg
(1996b).

Figure 27 Experimental
hexagon nucleation at a
spiral core for r 4 4.5 and
e 4 3.19. The pictures are
spaced 3.6tv, 3.6tv, 22.7tv,
18.0tv, and 10.7tv apart.
From Assenheimer &
Steinberg (1996b).

7. SPIRAL-DEFECT CHAOS

For r ' 1, Morris et al (1993) discovered a spatio-temporally chaotic state in a
circular large-aspect-ratio cell with C 4 78 while increasing e above 0.26. This
novel state is now referred to as spiral-defect chaos (SDC). A snapshot is shown
in Figure 28. SDC is characterized by complex spatio-temporal dynamics involv-
ing rotating spirals, targets, dislocations, disclinations, and grain boundaries. The
spirals can be right-handed or left-handed, and single-armed or multi-armed, and
thus have common features with the giant spirals discussed in Sect. 6.3. This new
state is a nice example for the little-understood phenomenon of spatio-temporal
chaos (see, for instance, Gollub 1994).

Much recent experimental (see, for instance, Ahlers 1998 and references
therein) and theoretical (see, for instance, Cross 1996 and references therein) work
has provided convincing evidence that SDC is an intrinsic state of RBC for fluids
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Figure 28 A snapshot of
spiral-defect chaos (SDC)
in a circular cell of C 4
78 at e 4 0.72 and r 4
0.96. From Morris et al
(1993).

with r ' 1. In distinction to the features of the textured patterns discussed in
Section 6.4, SDC is not caused or substantially influenced by the sidewalls. It
occurs with rectangular (Morris et al 1996) as well as with circular (Morris et al
1993) sidewalls, provided the aspect ratio is not too small. SDC was found numer-
ically in solutions of a generalized Swift-Hohenberg equation (Xi et al 1993) and
of the Boussinesq equations (Decker et al 1994, Pesch 1996) (see Section 3).

In their simulations, Decker et al (1994) were able to use an experimental
shadowgraph picture from Morris et al (1993) as initial conditions (see Section
3) and to reproduce the experimentally observed dynamics over at least a modest
time interval. This is illustrated in Figure 29. The numerical dynamics resemble
the experiment quite closely. The small differences may be easily explained by
the difference in boundary conditions and the sensitivity of (‘‘chaotic’’) SDC to
small differences in initial conditions. The code can thus be used to generate
reliably the full three-dimensional temperature and velocity fields, which are not
accessible with the experimental shadowgraph technique. Of particular interest is
the opportunity to determine the mean-flow field (or vertical vorticity), which is
important for the dynamics of SDC (Xi et al 1993, Decker et al 1994, Cross 1996)
but difficult to determine experimentally, by using the experimental image as the
initial condition for a relatively brief numerical integration. Figure 30 shows the
strength of the vertical vorticity overlaid onto the convection pattern. The vertical
vorticity is clearly localized at high-curvature regions, i.e. at spiral cores, grain
boundaries, and dislocations. Apart from numerical simulations, we know of only
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Figure 29 (A) Initial shadowgraph picture of SDC for e 4 0.7 and r 4 1. (B) Shad-
owgraph picture, (C) Numerically simulated midplane temperature-field after 20tv (only
the central section of the sample is shown). After Decker (1995).

Figure 30 Vertical vor-
ticity field overlaid on top
of the convection pattern
for e 4 0.75 and r 4 1.1.
Regions of high vorticity
appear bright. From simu-
lations by IV Melnikov
and W Pesch, unpub-
lished.

one direct experimental visualization of the mean flow. This was done for an off-
center target pattern by Croquette et al (1986b) by using a photochromic technique
in an experiment with water.

In experiments using compressed SF6 gas, Assenheimer & Steinberg (1993,
1994) found a transition from SDC to target chaos when r was increased above
approximately 4 by tuning the temperature and pressure near the critical point of
the gas. This is consistent with the notion that for larger Prandtl numbers, mean
flow effects are weaker. Such transitions have been confirmed in numerical studies
(Decker 1995, Cross 1996) but are not understood in detail.
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Figure 31 The onset es of SDC as a function of aspect ratio C and Prandtl number r for
circular cells (except where noted). (a): r . 1; Solid circles: C 4 29, 70, and 109 (from
J Liu, KMS Bajaj, and G Ahlers, unpublished); open circle: C 4 40 (from Ecke & Hu
1997); triangle: C 4 52 and 60 (from Hu et al 1995c); square: C 4 75 (from Morris et
al 1996); upside-down triangle: c 4 50 for a square cell (from Cakmur et al 1997a). The
solid line is a guide to the eye. (b): C 4 30 (triangles) and C 4 70 (circles). The open
circles are for pure gases, and the solid circles are for gas mixtures. After Liu & Ahlers
(1996).

7.1 Onset

The onset value es of SDC decreases as C increases. This is shown in Figure 31a.
The influence of cell geometry on es appears to be weak. For example, for r '
1 Hu et al (1995c) and Cakmur et al (1997a) found nearly the same value es for
a circular and a square cell with the same C . 50. There seem to be two regimes
with different es. For C & 50 the onset occurs near es . 0.6, whereas for C ' 70
SDC is found already for e ' 0.2. As can be seen in the figure, the transition
from one regime to the other occurs over the relatively small C-range from 50 to
70. There is no indication that es approaches zero as C becomes large, as had
been suggested by Li et al (1998). The SDC onset also has an interesting depen-
dence on r. Using mixtures of gases, it was possible to reach r-values as small
as 0.17 (Liu & Ahlers 1996). Results for two values of C are shown in Figure
31b. The data suggest that es remains finite with a value close to 0.1 as r vanishes.

7.2 Spatio-temporal Evolution of SDC

For circular cells of C 4 40 and 78, the mean wavenumbers ^q& obtained by
Fourier analysis of images are shown in Figure 21. Since, at small e, large- and
small-aspect-ratio systems are subject to different wavenumber-selection mech-
anisms (see Sect. 6.4), the SDC onset is also different. The results suggest that

A
nn

u.
 R

ev
. F

lu
id

 M
ec

h.
 2

00
0.

32
:7

09
-7

78
. D

ow
nl

oa
de

d 
fr

om
 a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
U

ni
ve

rs
ity

 o
f 

C
al

if
or

ni
a 

- 
Sa

n 
D

ie
go

 o
n 

01
/2

5/
17

. F
or

 p
er

so
na

l u
se

 o
nl

y.



752 BODENSCHATZ n PESCH n AHLERS

Figure 32 The probabil-
ity q(m) of finding m spi-
rals in a given image for e
4 0.96. The solid line is a
Poisson distribution. After
Ecke et al (1995).

there is a separatrix (roughly a straight line through the two large circles in Figure
21) below and to the right of which SDC does not occur. As SDC evolves above
that line, it provides its own selection mechanism. Thus the data sets in Figure
21 for the two aspect ratios approach each other, and for e ' 0.6 select the same
^q& in fully developed SDC. The shape of the convection cell is apparently of
minor importance because (at least for e & 1) almost the same ^q& is selected in
equal-aspect-ratio cells with circular (Hu et al 1995c) and square (Cakmur et al
1997a) geometry.

Time series of shadowgraph images of SDC were analyzed by constructing
the three-dimensional structure-factor S(k, x) of the shadowgraph intensity (Mor-
ris et al 1996). These data were used to characterize the e-dependence of the
translational correlation length and the correlation time of the chaotic state (Hu
et al 1995c, Morris et al 1996). Both were found to decrease approximately as a
power law in e, but a theoretical explanation of this behavior remains to be
developed.

An interesting aspect of SDC is the statistics of its time dependence. The
number of spirals present at any instance fluctuates. Figure 32 gives the experi-
mentally determined probability q(m) of finding m spirals in a given snapshot of
the pattern (Ecke et al 1995). It is fit well by a Poisson distribution (solid line).
It should be noted that there are no adjustable parameters, since the Poisson
distribution is determined completely by the average number of spirals ^m&, which
in turn is determined separately from the same set of images. The agreement
between the data and the Poisson distribution function is quite good, implying
that the birth and death of a particular spiral is not significantly dependent on the
presence of the others, i.e. that the spirals to a good approximation may be
regarded as ‘‘noninteracting excitations’’ of the system (see Landau & Lifshitz
1958).
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Figure 33 Orientational
correlation lengths n0

compared to ns (see text)
for C 4 50, r 4 1.03.
From Egolf et al (1998).

7.2.1 Coexistence with ideal straight rolls We saw already in Section 5 that
SDC is found in a parameter region where (besides targets and giant spirals) ideal
straight rolls (ISR) are stable as well. The Busse balloon, giving the stability
range of ISR, was shown in Figure 6. That figure included also the wavenumbers
corresponding to the maxima of the azimuthal averages of the moduli of the
Fourier transforms of SDC images, and these were located deep in the interior of
the balloon. Similar data for the mean wavenumber of SDC are found in Figure
21. Images that compare SDC and ISR in the same cells and at the same r and
e are shown in Figure 5. Additional confirmation of the bistability comes from
integrations of the Boussinesq equations with periodic boundary conditions,
which always yield SDC from random initial conditions but give stable ISR when
ISR-like initial conditions are used (Decker et al 1994). In the experiments, SDC
is the generically selected state above es when e is quasistatically increased from
onset (see Liu & Ahlers 1996 and references therein). One concludes that the
boundary-induced disorder (foci, dislocations, and grain boundaries) that evolves
as e is increased places the system into the SDC attractor basin before es is
reached. Special initial conditions are needed to reach the competing attractors,
as discussed in Section 5.

Several quantities have been used to characterize the onset of SDC at es. For
circular cells, Hu et al (1995a,c) demonstrated that the global curvature of the
patterns (see Figure 20b) suddenly increased at es. Another method consisted of
counting the number m of spirals present in many images of a given finite sample
and determining where their averages ^m& vanish as a function of e (Ecke et al
1995, Liu & Ahlers 1996, Ecke & Hu 1997). The question was addressed also
for square cells (Cakmur et al 1997a, Egolf et al 1998). When es was approached
from above, the spatio-temporal evolution of SDC was dominated by progres-
sively larger regions of ISR and larger spirals. This was quantified by Egolf et al
(1998). Figure 33 shows the experimentally observed, rapid growth of the ori-
entational correlation length n0. Egolf et al (1998) showed that the transition
between ISR and SDC occurred as n0 approached the system size in their exper-
iment. They also found n0 to be proportional to a characteristic length ns, which
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Figure 34 Time evolu-
tion of the pattern entropy
S and the pattern for e 4
0.554: (a) 14.52th, (b)
20.27th, (c) 30.95th, (d)
32.32th. From Cakmur et
al (1997b).

is a measure of the density nd of targets and spirals. One finds n ' n 40 s

(see Figure 33). In addition, the pattern appeared to fluctuate intermit-11n /3.5! d

tently between a disordered state and almost perfect ISR. This is illustrated in
Figure 34. Cakmur et al (1997a) quantified this behavior by using the spectral
pattern entropy22 (Neufeld & Friedrich 1994, Xi &r r

rS(t) 4 1( p(k,t) ln p(k,t)k

Gunton 1995), where p( , t) is the spectral distribution function that describesrk

22J Liu, KMS Bajaj, and G Ahlers (unpublished) recently found similar behavior for a
circular cell of K 4 109. That work was presented at the workshop Spatiotemporal Char-
acterization of Spiral Defect Chaos at Los Alamos National Laboratory, January 4–5,
1999.
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Figure 35 (A) The time-averaged pattern entropy ^S&t and (B) the standard deviation r(S)
as a function of e. After Cakmur et al (1997a).

the normalized power in mode at time t. S(t) measures the disorder in the pattern.rk
For example, if the pattern is ideal, i.e. when only a pair of conjugate modes is
excited, S 4 ln 2, and otherwise, S . ln 2.23 In Figure 34, the time evolution of
the pattern entropy is shown for e 4 0.554. The degree of spatial order of the
patterns as judged by eye shows a clear correlation with the value of the pattern
entropy. Cakmur et al (1997a) observed that the well-ordered patterns during the
evolution were typically aligned either diagonal or perpendicular to one of the
sidewalls of the square cell; it appeared that the pattern was probing the system’s
symmetries. In Figure 35A, the temporal average of the pattern entropy ^S&t as a
function of e is shown. As the transition to ISR is approached from above, ^S&t

shows a sharp decrease. Figure 35B shows the standard deviation r(S) over the
same range of e.24 As es is approached, r(S) displays a sharp increase. It is also
possible to measure r(S) below e(S) in the fluctuating region of SDC before a
strong fluctuation leads to ISR. This is also shown in Figure 35B. For e k es the
standard deviation r(S) approaches a small value, suggesting that the system
consists of many independent, fluctuating subsystems. The behavior shown in
Figure 35 appears to be similar to a second-order equilibrium phase transition in
a finite-size system, where ^S&t would correspond to the internal energy and r(S)
to the specific heat. On the other hand, the well-established bistability of SDC
and ISR has similarities with a first-order equilibrium phase transition. It is not
yet clear whether the comparison to equilibrium phase transitions is justified or
even helpful. Other approaches to understanding SDC as a competition between

23If only half of the modes in Fourier space are taken, an ideal pattern would have S 4
0.
24The quantity r(S) given by Cakmur et al (1997a) is the standard deviation of S from its
mean value, rather than the variance, as stated by the authors.
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Figure 36 SDC propagates into ISR with a flat front for e 4 0.71. The figures are spaced
Dt 4 5902tv apart. In (B), the front is sufficiently close to the opposite sidewall to trigger
nucleation of defects. From Jeanjean (1997).

two attractors might be in terms of blowout bifurcations (Ashwin 1998). However,
an extension of this theory to spatio-temporal chaotic systems has not been
developed.

In another experiment, the spatio-temporal dynamics of SDC were analyzed
by a Karhunen-Lóeve decomposition (Zoldi et al 1998). This analysis suggests
that the spatio-temporal chaotic properties of SDC are extensive. This is consistent
with the e-independence of r(S) for sufficiently large values of e (Figure 35B).

When initializing an almost perfect ISR state, Cakmur et al (1997a) observed
that SDC can propagate into ISR. This was investigated in more detail for a
rectangular cell of aspect ratio 100 2 50 by Jeanjean (1997) where an ISR state
was initialized with the same method as that used by Cakmur et al (1997a). For
a fixed value of e, when the experiment was started with a perfect stripe pattern,
SDC nucleated after long times in only one corner of the convection cell. Jeanjean
(1997) attributed this to a slight geometrical inhomogeneity. Then SDC grew at
the sidewalls by compressing the ISR. After an initial transient, where ISR
adjusted their wavenumber toward the SV-instability boundary, SDC started prop-
agating into the ISR state with a flat front. An example of the evolution of SDC
propagating into ISR is shown in Figure 36. Local chaotic fluctuations com-
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Figure 37 Front propa-
gation velocity v versus e.
The solid line is the fit v 4
1.51(e ` 0.04)2.97. From
Jeanjean (1997).

pressed the rolls at the boundary between SDC/ISR, hereby increasing the local
wavenumber above the SV-instability boundary. An SV-instability occurred, and
as described in Section 5, a dislocation pair nucleated, which then moved toward
other dislocations or the boundaries so as to decrease the number of roll pairs.
This process continued as SDC gradually replaced the straight rolls. It was found
that the front propagated with constant velocity, whose magnitude increased with
increasing e, as shown in Figure 37. Below es, Jeanjean (1997) found a drifting
pattern that appeared to be dominated by wall foci. It was suggested that the front
speed may be limited by the spatio-temporal dynamics that lead to SV-instabilities
(IV Melnikov, DA Egolf, E Bodenschatz, unpublished). However, the understand-
ing of this very interesting property of RBC remains a challenge.

One of the characteristic features of SDC is that its average wavenumbers as
determined by Fourier transforms (Morris et al 1993) or by local measurements
in physical space (Egolf et al 1998, Bowman & Newell 1998) are in the middle
of the stability region for ISR. A small tail of the local wavenumber distribution
is above the SV-instability boundary, while only an unnoticeable amount is below
the CR-instability boundary (Egolf et al 1998). An example of the wavenumber
distribution is shown in Figure 38, which also compares the local wavenumber
with the azimuthally averaged power spectrum. Patches with CR-unstable wave-
numbers persist only for short periods of time due to the the fast growth rate of
the CR-instability and consequently contribute only little to the time-averaged
wavenumber distribution. Regions with large q contribute significantly, as the SV-
instability is a slow growing instability. It is apparent that the stability boundaries
for ISR (Busse balloon) apply locally in a disordered SDC patterns (Egolf et al
1998).

8. ROTATION ABOUT A VERTICAL AXIS

Rotation inhibits the onset of convection and increases the critical wavenumber
of the pattern at onset (Chandrasekhar 1961). Figure 39 shows experimental and
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Figure 38 Probability
densities of the local
wavenumber (solidr|q( x )|
line) and the power spec-
tral density (circles) for e
4 0.805 computed from
the central 63d 2 62d
region of 300 images each
separated by 240sv). Ver-
tical lines denote the lower
(cross-roll) and upper
(skewed-varicose) stabil-
ity boundaries. After Egolf
et al (1998).

Figure 39 The critical Rayleigh numbers Rc(X)/Rc(0) (left) and critical wavenumbers
kc(X)/kc(0) (right) as a function of X for water (r 4 5.4, open circles) and argon at 20 bar
(r 4 0.68, open triangles), 30 bar (r 4 0.69 inverted solid triangles), and 40 bar (r 4
0.695, solid triangles). The results agree with calculations for a laterally infinite system
(solid lines). After Bajaj et al (1998).

theoretical results for Rc(X) and qc(X). We see that, at the linear level, there is
excellent agreement between experiment and theory. Both Rc(X) and qc(X) are
predicted to be independent of r.

As we saw in Section 5, RBC sufficiently close to onset (e & 0.1) is relatively
simple and, in the absence of boundary forcing, consists of time-independent
straight rolls. The system becomes much more complex and interesting even near
onset, when it is rotated about a vertical axis êz with an angular velocity X [
(d 2/m) ẑ ( is the rotation rate in radian per second and ẑ is the unit vector in˜ ˜X X
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Figure 40 The differ-
ence M 4 (ml 1 mr)/(ml

` mr) between the aver-
age number of left-handed
(ml) and right-handed (mr)
spirals, normalized by the
total number (ml ` mr), as
a function of the rotation
frequency X. The solid
line is the function M 4
tanh(X/X0) with X0

adjusted to fit the data.
After Ecke et al (1995).

the vertical direction). In that case, the Coriolis force proportional to rX ê 2 uz

acts on the convecting fluid (here is the fluid velocity field in the rotating frame)ru
and renders the system nonvariational. Thus time-dependent states can occur arbi-
trarily close to onset. Over a wide parameter range, the bifurcation remains super-
critical for X . 0, i.e. the flow amplitudes still grow continuously from zero and
the usual weakly nonlinear theories, for instance in the form of Ginzburg-Landau
(GL) or SH-equations, should remain applicable. Thus one may expect interesting
new effects to occur in a theoretically tractable parameter range.

8.1 Small Rotation Rates

In the range X & 10, a number of interesting, albeit somewhat complicated and
as yet incompletely understood, phenomena occur. Although at onset the pattern
seems to consist of time-independent rolls, for small e these rolls become curved
and assume an S-shape. As e increases slightly, formation of defects adjacent to
the sidewall, gliding (Millan-Rodriguez et al 1995) and climbing of defects
through the cell interior, and the motion of walls between domains of different
roll orientation become prevalent. A significant fraction of these dynamics seems
to be induced by the sidewalls. We do not discuss these interesting phenomena
in detail, but instead refer the reader to the papers by Hu et al (1997, 1998) for
recent results and for references to earlier literature.

One noteworthy aspect of moderate rotation rates and somewhat larger e '

0.5 is the influence of the rotation on SDC (Ecke et al 1995). It turns out that for
X 4 0 the average number of right-handed (r) and left-handed (l) spirals is equal.
With rotation, this chiral symmetry is broken. A useful order parameter to describe
this phenomenon is M 4 (ml 1 mr)/(ml ` mr), where ml and mr are the average
number of left-handed and right-handed spirals, respectively. The parameter M
can vary from 11 to 1 and vanishes for X 4 0. Results for M are shown in
Figure 40. It turns out that M(X) can be described well by a hyperbolic tangent
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Figure 41 An example
of the Küppers-Lortz
unstable rolls for X 4
15.4 and CO2 at a pressure
of 32 bar with r 4 1.0 and
e 4 0.05. After Hu et al
(1995b).

or by a Langevin function, as shown by the solid line in the figure. This is
reminiscent of the magnetization M(H) of a dilute paramagnet as a function of
the applied magnetic field H.

8.2 Domain (or Küppers-Lortz) Chaos

For X . Xc, the primary bifurcation leads immediately to a state of spatio-
temporal chaos in the form of rolls that are unstable (Küppers & Lortz 1969,
Küppers 1970, Clever & Busse 1979, Niemela & Donnelly 1986). Xc depends
on the Prandtl number r, and it has a value near 14 for the r-values near unity,
which are characteristic of compressed gases. The instability is to plane-wave
perturbations, which are advanced relative to the rolls at an angle UKL in the
direction of X. This phenomenon is known as the Küppers-Lortz instability. A
snapshot of the resulting nonlinear state of convection is shown in Figure 41 (Hu
et al 1995b). The pattern consists of domains of rolls that incessantly replace each
other, primarily by irregular domain-wall motion (see e.g. Hu et al 1998 and
references therein). The spatial and temporal behavior suggests the term ‘‘domain
chaos’’ for this state. For r ' 0.33, the primary bifurcation is expected to be
supercritical both below and above Xc.
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Figure 42 The characteristic domain-switching frequencies xa (left) and lengths n (right)
of the KL-state. The data were divided by X-dependent constants xr and nr so as to collapse
them onto single curves. The dashed lines are shown for reference and have the slopes 1
for xa and 11/2 for n, which correspond to the theoretically expected exponents of the
time and length scales near onset. The data sets cover approximately the range 14 , X ,
20. See Hu et al (1998) for details.

The opportunity to study STC at onset has led to renewed recent theoretical
and experimental interest25 in the KL-state. For r ' 1 and X & 20, it was dem-
onstrated experimentally with high resolution (Hu et al 1997) that the bifurcation
is indeed supercritical and that it leads to continuous domain switching through
a mechanism of domain-wall propagation even at small e (Bodenschatz et al
1992a; Hu et al 1995b, 1997, 1998) This qualitative feature has been reproduced
by Tu & Cross (1992b) in numerical solutions of appropriate coupled GL-
equations, as well as by Neufeld et al (1993) and Cross et al (1994) through
numerical integration of a generalized SH-equation.

Of interest are the time and length scales of the KL-instability near onset. The
GL-model assumes implicitly a characteristic time dependence that varies as e11

and a correlation length that varies as e11/2. Measurements of a correlation length
given by the inverse width of the square of the modulus of the Fourier transform
as well as domain-switching frequencies as revealed in Fourier space yielded the
data in Figure 42 (Hu et al 1995b, 1997). These results seem to be inconsistent
with GL-equations, because they suggest that the time in the experiment scales
approximately as e11/2 and that the two-point correlation length scales approxi-

25de Bruyn et al (1996), Hu et al (1995b), Zhong et al (1991), Zhong & Ecke (1992), Tu
& Cross (1992b), Fantz et al (1992), Neufeld et al (1993), Cross et al (1994), and Ponty
et al (1997)
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mately as e11/4.26 These results also differ from numerical results based on a
generalized SH-equation (Cross et al 1994), although the range of e in the numer-
ical work is rather limited. The disagreement between experiment and theory is
a major problem in our understanding of STC. It is interesting to note that, very
recently, Laveder et al (1999) were able to generate numerical solutions of a
stochastic SH-model that yield an e dependence of n quite similar to that of the
experimental results in Figure 42. However, quite large noise intensities were
required in the model, far in excess of any noise source in the experiment. A
more likely candidate for an explanation was suggested by Hu et al (1998). As
noted by Hu et al (1997) at relatively small X, the sidewalls generate defects that
travel into the sample interior. Since the defects travel at a constant speed rather
than diffusively, they possibly can influence the system interior even when C is
quite large, as in the experiment. It is conjectured that the defects break up the
KL-domains and thus alter the characteristic length- and timescales. It remains to
test this hypothesis experimentally as well as by numerical integrations of the
Boussinesq or SH-equations with realistic lateral boundary conditions.

8.3 Squares near Onset

Motivated by the unexpected scaling of length and time with e for the KL-state
at X & 20, new investigations were undertaken recently in which the range of X
was significantly extended to larger values. Contrary to theoretical predictions
(Clever & Busse 1979, Clune & Knobloch 1993), it was found (Bajaj et al 1998)
that, for X ' 70, the nature of the pattern near onset changed qualitatively
although the bifurcation remained supercritical. Square patterns like the one
shown in Figure 43 were stable, instead of typical KL-patterns like the one in
Figure 41. The squares occurred both when argon with r 4 0.69 was used (Figure
43a) and when the fluid was water with r . 5 (Figure 43b). Subsequently they
were found also in numerical integrations of the Boussinesq equations (Figure
43c). Over significant e-ranges, defects appeared in the square lattice, and for
some parameters the lattice was really destroyed; but local fourfold coordination
persisted for e & 0.13 over the range 70 & X & 250. For larger e the pattern
was more nearly reminiscent of the KL-state. The occurrence of squares at onset
in this system is completely unexpected and not predicted by theory; according
to the theory (Clever & Busse 1979, Clune & Knobloch 1993), the KL-instability
should continue to be found near onset also at these higher values of X. Thus we
are faced with a major disagreement with theoretical predictions in a parameter
range where one might have expected the theory to be reliable. Additional exper-

26It was shown by Hu et al (1998) that the data for n and xa can be fit reasonably well
with a powerlaw and the expected theoretical leading exponents if large correction terms
are allowed in the analysis; but even then there are significant systematic deviations at
small e, particularly for n.
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Figure 44 The rotation
rate of the square patterns
formed with water (r 4
5.4, X 4 170) as a func-
tion of e. After Bajaj et al
(1998).

Figure 43 Examples of square patterns near onset. (a) Argon gas with r 4 0.69 for e
4 0.04 and X 4 145. (b) Water with r 4 5.4 for e 4 0.09 and X 4 170. (c) Numerical
integration of the Boussinesq equations (see Section 3.4) for r 4 5.3, e 4 0.06, and X
4 60. (a) and (b): Bajaj et al (1998). (c): O Brausch, W Pesch, unpublished.

iments and simulations in the range 0 & X & 400 and 0.7 & r & 5 clearly should
be carried out.

A further interesting aspect of the square patterns is that the lattice rotates
slowly relative to the rotating frame of the apparatus. This was found in the
experiments with argon and water as well as in the simulation. Figure 44 gives
the angular rotation rate x (scaled by d 2/m) of the lattice for the water experiment.
The data are consistent with x(e) vanishing as e goes to zero. Thus the bifurcation
to squares is not a Hopf bifurcation. Presumably, as the aspect ratio of the cell
diverges, the slope of x(e) vanishes because an infinitely extended lattice cannot
rotate. Alternatively, of course, the lattice might become unstable as C becomes
large. It will be interesting to study the C dependence of x experimentally.
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Figure 45 The Prandtl
number r as a function of
the mole fraction x of the
heavy component for four
gas mixtures at a pressure
of 22 bar and at 258C.
After Liu & Ahlers (1997).

9. CONCLUSION AND OUTLOOK

Convection in gases has opened up new vistas and brought a number of advan-
tages for the study of pattern formation. First, the timescales of pattern evolution
are typically two orders of magnitude faster than, for instance, those for water.
Second, flow visualization by the shadowgraph method has very high sensitivity
for these thin layers (see de Bruyn et al 1996). Third, the small thickness has
brought us large-aspect-ratio cells that make it possible to study phenomena such
as SDC, which do not occur in smaller systems. Fourth, these thin layers are more
susceptible to the influence of thermal noise than is the case for classical liquids,
thus enabling the quantitative study of noise-induced fluctuations. Fifth, the con-
ductivity of gases usually is very small, and thus it is relatively easy to satisfy
the condition (assumed in much of the theoretical work) that the conductivities
of the top and bottom plates are much larger than that of the fluid. And finally,
the gas mixtures have afforded access to Prandtl numbers as small as 0.16 without
inhibiting flow visualization. Because of these unique aspects, there are a number
of additional, as yet unexploited, opportunities provided by gas convection, and
in this section we mention briefly a few particularly interesting problems that are
accessible to experiment.

9.1 RBC with Rotation at Small r

The rotating RBC system becomes particularly interesting for r , 1. Prandtl
numbers as small as 0.16 can be reached in mixtures of gases if one component
has a molecular weight that is much larger than that of the other (Liu & Ahlers
1997). This is illustrated in Figure 45, which gives r(x) as a function of the mole
fraction x of the heavier component for four mixtures. An important question in
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this relation is whether the mixtures will behave similarly to pure fluids with the
same r. To a good approximation this is expected to be the case, because the
Lewis numbers (the ratios of the mass diffusivities to the thermal diffusivities)
are of order one. This means that heat diffusion and mass diffusion occur on
similar timescales. In that case, the effect of the concentration gradient will be
primarily to contribute to the buoyancy force in synchrony with the thermally
induced density gradient, and thus for W . 0 (W is the separation ratio of the
mixture), the critical Rayleigh number will be reduced. Scaling bifurcation lines
by Rc(W) will mostly account for the mixture effect. To some extent this was
shown already by experiment (Liu & Ahlers 1996, 1997). Recent additional mea-
surements (KMS Bajaj, W Pesch, and G Ahlers, unpublished) demonstrated that
the bifurcation line Rc(W, X)/Rc(W, 0) and critical wavenumber qc(W, X)/qc(W,
0) are within experimental resolution independent of W. In addition, linear sta-
bility analyses for these mixtures (KMS Bajaj, W Pesch, and G Ahlers, unpub-
lished) also showed that these ratios are only very weakly dependent on W.

For r . 0.33, the primary bifurcation at easily accessible rotation rates is
predicted to be stationary and supercritical. At very large X and for r , 0.68 it
is predicted to be preceded by a supercritical Hopf bifurcation (Clune & Knobloch
1993). In the stationary case, one always expects KL-chaos. As discussed above
in Section 8.3, experiments do not agree with this; X ' 70 square patterns, which
are clearly unrelated to the typical KL-domains, appear near onset. The range
0.16 & r & 0.33 is truly remarkable because of the richness of the bifurcation
phenomena that occur there when the system is rotated. For instance, for r 4
0.26 there is a range from X . 16 to 190 over which the bifurcation is predicted
to be subcritical. This is shown by the dashed section of the curve in Figure 46B.
The subcritical range depends on r. In Figure 46A it covers the area below the
dashed curve. Thus, the dashed curve is a line of tricritical bifurcations.27 It has
a maximum in the X 1 r plane. An analysis of the bifurcation phenomena, which
occur near it in terms of Landau equations, may turn out to be interesting. One
may expect path-renormalization (Fisher 1968) of the classical exponents in the
vicinity of the maximum. We are not aware of equivalent phenomena in equilib-
rium phase transitions, although presumably they exist in as-yet-unexplored
parameter ranges. The Hopf bifurcation that precedes the stationary bifurcation
at relatively large X is predicted to be supercritical and to lead to standing waves
of convection rolls (Clune & Knobloch 1993). Standing waves are relatively rare;
usually a Hopf bifurcation in a spatially extended system leads to traveling waves.
The bifurcation lines for r 4 0.26 are shown in Figure 46B. As can be seen

27Early theoretical evidence for the existence of a subcritical and tricritical bifurcation is
contained in the work of Clever & Busse (1979). More recent calculations of the tricritical
line by Clune & Knobloch (1993) are inconsistent with the result of Clever & Busse (1979).
A new calculation (KMS Bajaj, W Pesch, G Ahlers, unpublished) of the tricritical line
yielded the results shown in Figure 46, which are more detailed than, but agree with, those
of Clever & Busse (1979).
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Figure 46 The theoretically predicted bifurcation diagram for RBC with rotation about
a vertical axis. (A) The dashed curve gives the tricritical line. The dash-dotted line is the
codimension-two line where the Hopf bifurcation meets the stationary bifurcation, e.g. the
solid circle in B. For r 4 0.24 the codimension-two line intersects the tricritical line,
leading to the codimension-three point shown by the open circle in B. The upper dotted
line in A corresponds to the path represented in B. The lower dotted line in A represents
the lowest r-value accessible to experiment using gas mixtures. (B) Bifurcation lines for
r 4 0.26. The dashed line shows the range over which the stationary bifurcation is sub-
critical. The two plusses are the tricritical points. The dash-dotted line at large X shows
the Hopf bifurcation. (From KMS Bajaj, W Pesch, G Ahlers, unpublished.)

there, the Hopf bifurcation terminates at small X at a codimension-two point on
the stationary bifurcation, which, depending on r, can be super- or subcritical.
The line of codimension-two points is shown in Figure 46A as a dash-dotted line.
One sees that the tricritical line and the codimension-two line meet at a codi-
mension-three point, located at X . 270 and r . 0.24. We note that this is well
within the parameter range accessible to experiments with gas mixtures. We are
not aware of any other experimentally accessible examples of codimension-three
points. This particular case should be accessible to analysis by weakly nonlinear
theories, and a theoretical description in terms of Ginzburg-Landau equations
would be extremely interesting and could be compared with experimental
measurements.

9.2 RBC with Inclination

Another interesting variation of traditional RBC is convection in a fluid layer that
is inclined relative to gravity. Then, as a function of Prandtl number and incli-
nation angle, not only buoyancy-driven but also shear-flow–driven instabilities
occur. As in RBC with rotation, the system is particularly rich in the Prandtl-
number range accessible in experiments with compressed gases.

A summary of the pertinent literature can be found in the papers by Busse &
Clever (1992) and Kelly (1994). In contrast to usual RBC, the basic state consists
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Figure 47 Sketch of the
geometrical configuration
and the shear-flow velocity
profile.

of heat conduction and a parallel shear flow with cubic velocity profile. A sche-
matic plot is given in Figure 47. The shear flow breaks the in-plane isotropy of
the usual RBC. In this sense the system is similar to convection in liquid crystals
with planar alignment of the director (see, for instance, Kramer & Pesch 1995).
For angles smaller than 908 the fluid is heated from below, and both buoyancy
and shear are destabilizing, whereas for angles above 908 the fluid layer is heated
from above, where buoyancy is stabilizing and shear is destabilizing.

Linear stability analysis of the basic state is discussed in the papers by Fujimura
& Kelly (1993a,b) and Chen & Pearlstein (1989). Depending on the inclination
angle c and on r, longitudinal, oblique, transverse, and traveling transverse rolls
are the possible flow structures at onset. The most common pattern for c , 908
and r . 0.6 is longitudinal rolls with their axes aligned with the shear flow
(q 4 (a, 0)). This situation is analogous to Rayleigh-Bénard convection with
Poiseuille flow, for which longitudinal rolls is the preferred state (see e.g. Fuji-
mura & Kelly 1995). The onset of longitudinal rolls is independent of r. As
shown by Kurzweg (1970) for the linearized equations and later by Clever (1973)
in the nonlinear case, longitudinal rolls can be described by a suitable rescaling
of any two-dimensional solution of the horizontal Rayleigh-Bénard problem. The
instability of the ground state with respect to longitudinal rolls is at the critical
Rayleigh number 4 Rc/ cos c and the critical wavenumber 4 ac, whereL LR ac c

Rc 4 1708 and ac 4 3.117 are the critical Rayleigh and wavenumbers of hori-
zontal RBC. The analysis of Gershuni & Zhukhovitskii (1969) showed that
oblique rolls with q 4 (a, b) always have a higher threshold compared with
longitudinal rolls. The critical Rayleigh numbers of the other solutions are not so
easy to obtain, and a detailed discussion is given by Fujimura & Kelly (1993a).
For Prandtl numbers 0 , r , 0.26, transverse rolls with q 4 (0, b) (roll axes
transverse to the shear flow) are realized for all angles of inclination. For r .
0.26 and 08 , c, cc, longitudinal rolls are the linear perturbations that goes
unstable first. For 0.26 , r , 12.42 and c . cc, transverse rolls have a lower
threshold. For r . 12.42, traveling transverse rolls are realized at onset for angles
close to 908. The codimension-two point, at cc, where transverse rolls and lon-
gitudinal rolls bifurcate at the same threshold, can be understood in the
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Figure 48 Stability dia-
gram of the basic flow as a
function of inclination
angle c for different
Prandtl numbers for lon-
gitudinal rolls (dashed)
and transverse rolls
(solid). To the left of the
dash-dotted line at 908, the
convection cell is heated
from above, whereas to the
right it is heated from
below. Also shown are
experimental data for r 4
1.06 in a cell with an
aspect ratio of 21 2 42.
From Daniels et al (1999).

context of a competition of the two different physical instability mechanisms: the
thermal, leading to longitudinal rolls, and the hydrodynamic (shear-flow), leading
to transverse rolls. With increasing r, the codimension-two point moves quickly
to angles close to 908. Above 908 the fluid layer is heated from above and the
instabilities are driven by shear flow. In Figure 48 the stability diagram of the
basic state is plotted for three different Prandtl numbers. Also shown in Figure
48 is the experimentally measured onset for pressurized CO2 gas with r 4 1.06.
The theoretical predictions agree well with the experimental values. However,
above cc, traveling transverse rolls were observed in the experiment although the
theory predicts stationary transverse rolls. Perhaps this discrepancy can be attrib-
uted to NOB effects; but only further investigations will settle this issue. Mean-
while, the results of Daniels et al (1999) are the first experimental confirmation
of the theoretically predicted onset values for angles from 08 to 1208.

The nonlinear regime and the possible flow structures have been studied the-
oretically in two- and three-dimensional simulations by Clever & Busse (1977),
Busse & Clever (1992), and with semi-analytical methods by Auer (1993) and
Fujimura & Kelly (1993a,b). The analysis by Fujimura & Kelly (1993a,b) focuses
on the interesting region at the codimension-two point where both longitudinal
and transverse rolls bifurcate at onset. They predict a bimodal state that was found
recently (KE Daniels and E Bodenschatz, unpublished). Clever & Busse (1977),
Busse & Clever (1992), and Auer (1993) investigated the nonlinear regime in the
region where longitudinal rolls appear at threshold. One of their predictions is
that for a convecting gas with r ' 1, longitudinal rolls should be unstable to a
pattern of stationary undulations.
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Previous experimental investigations of convection in inclined layers are sum-
marized by Shadid & Goldstein (1990). The experiments were performed in rec-
tangular cells with the largest aspect ratio being 20 2 40. In most cases the heat
flux across the layer was measured. In the experiments by Hart (1971a,b), Ruth
et al (1980), and Ruth (1980), the fluid flow was visualized by introducing tracer
particles into it. When the fluid was air, smoke was used; and for water, ground
fish scales were employed. As a compromise to allow visualization, one of the
well-conducting boundaries (metal top plate) was replaced with a transparent but
poorly conducting plate [glass or PMMA (plexiglass)]. The results should be
considered as only qualitative, because it is well known from convection in a
horizontal layer that, in the case of asymmetric boundaries, the bifurcation dia-
gram near onset is considerably modified (see e.g. Busse 1989). In the recent
experiment by Shadid & Goldstein (1990), symmetric boundaries with low heat
conduction were used. A liquid-crystal sheet on the cell bottom and a glass top-
plate were used for visualization of the temperature field. As explained and
observed by the authors, insulating top and bottom boundaries lead to rectangular
patterns at the onset of convection. This situation is again different from that
addressed in the theoretical calculations. Experiments and numerical simulations
by Kirchartz & Oertel (1988) address the problem of convection in an inclined
rectangular box of aspect ratio 1:4:10 and 1:2:4. They visualized the flow by
optical interference techniques from the side. They showed that the flow in these
very confined geometries is strongly influenced by the sidewalls. Again, close to
onset the theoretical results discussed before are not applicable to this situation.

In summary, all experiments so far have been limited by the small aspect ratios
of the cells, the unequal or weakly conducting cell boundaries, the methods of
flow visualization, or the e-resolution of the experiments. In the linear regime,
good qualitative agreement for the onset of longitudinal and transverse rolls was
found. In the nonlinear regime, the transitions to wavy rolls was confirmed qual-
itatively. However, the experiments gave results that can be compared only semi-
quantitatively to the recent theoretical predictions by Clever & Busse (1977),
Busse & Clever (1992), Auer (1993), and Fujimura & Kelly (1993a,b).

By using compressed gases as a convecting fluid, it is now possible to explore
inclined RBC for a wide range of Prandtl numbers in large-aspect-ratio systems.
For example, Daniels et al (1999) investigated the phase diagram for r ' 1 and
found a variety of novel instabilities that are still under investigation. One impor-
tant discovery is that the instability of longitudinal rolls is not to stationary undu-
lations, as predicted by Clever & Busse (1977), but to spatio-temporal chaos.
New numerical simulations on the basis of Section 3.4 by Daniels et al (1999)
also found this spatio-temporal chaotic state. Daniels et al (1999) were also able
to visualize the convective patterns when the experiment was heated from above.
An example is shown for c 4 1208 in Figure 49 where the flow is purely shear
driven.
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Figure 49 Snapshot of the
convective pattern for c 4

1208, r 4 1.06, in a cell of
aspect-ratio 21 2 42. The
higher (lower) end of the
inclined cell is marked with
up (down). From KE Dan-
iels and E Bodenschatz,
unpublished.

9.3 RBC with Modulation of the Vertical Acceleration

The response of hydrodynamic systems to periodic modulation of the driving has
been of considerable interest since the seminal experiments of Donnelly et al
(1962). The case of modulated RBC has received much theoretical attention
(Ahlers et al 1985b).28 Either the vertical acceleration or the temperature differ-
ence can be modulated with a frequency x. The consequences are somewhat
different for two reasons. First, the acceleration affects the momentum-balance
equation, whereas the temperature enters into the heat equation. Second, gravity
modulation (a body force) does not change the symmetry of the conduction state,
whereas temperature modulation (when applied to the top or bottom plate) induces
a nonlinear conduction profile and thus leads to a transcritical bifurcation and
hexagonal patterns (Meyer et al 1988, 1992). In either case, the simplest modu-
lation would take the form e(t) 4 e0 ` dsin(xt), with x and t scaled by the
vertical thermal diffusion time sv 4 d 2/j. Among the expected effects are a shift
in the threshold, a subharmonic bifurcation over certain ranges of d and x, and
changes in the nonlinear properties such as the Nusselt number and the patterns
above onset. Experiments using thermal modulation (Meyer et al 1988, 1992)
have been difficult and confined to rather restricted regions of the x 1 d param-
eter space. The interesting region of large d was difficult to reach because of the

28A review of early work is given by Davis (1967).
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large thermal mass of the bottom plate of the convection cell. Gravity modulation
seemed even less promising with conventional convection systems employing
water as the fluid, because sv is of the order of 102 seconds and, with d of any
significant size and x small enough to produce interesting effects unrealistic peri-
odic vertical displacements.

Convection in gases has much to offer in this area. The fluid layers are much
thinner, with thermal diffusion times two orders of magnitude smaller than in
water (i.e. near 1). Consequently, the desired vertical displacements are realisti-
cally achievable in these systems. In addition, the Prandtl number is near one,
where modulation effects are maximal. We are pleased to see that work on this
interesting problem is now under way (Rogers et al 1998).
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